Minor (Lineare Algebra)
Minor oder Unterdeterminante ist ein Begriff aus dem mathematischen Teilgebiet der linearen Algebra. Man bezeichnet damit die Determinante einer quadratischen Untermatrix, die durch Streichen einer oder mehrerer Spalten und Zeilen einer Matrix entsteht. Die Anzahl der Zeilen bzw. Spalten der entsprechenden Untermatrix gibt die Ordnung des Minors an.
Kofaktoren
Definition
Zu einer quadratischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \times n} -Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = (a_{ij})_{ij}} sind die Kofaktoren (oder Cofaktoren) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde a_{ij}} durch folgende Formel definiert:[1]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde a_{ij} = (-1)^{i+j} \cdot M_{ij}.}
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{ij}} der Minor -ter Ordnung, der als Determinante derjenigen Untermatrix berechnet wird, die durch Streichen der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i} -ten Zeile und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j} -ten Spalte entsteht.
Statt Zeilen und Spalten zu streichen, kann man auch Matrizen betrachten, bei denen die Einträge der -ten Zeile oder der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j} -ten Spalte (oder beider) durch Nullen ersetzt werden, mit Ausnahme des Eintrags an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (i,j)} , der durch eine 1 ersetzt wird. Man erhält dann für die Kofaktoren:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde a_{ij} = \begin{vmatrix} a_{1,1} & \dots & a_{1,j-1} & 0 & a_{1,j+1} & \dots & a_{1,n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & & \vdots \\ a_{i-1,1} & \dots & a_{i-1,j-1} &0 & a_{i-1,j+1} & \dots & a_{i-1,n}\\ 0 & \dots & 0 & 1 & 0 & \dots & 0 \\ a_{i+1,1} & \dots & a_{i+1,j-1} &0 & a_{i+1,j+1} & \dots & a_{i+1,n}\\ \vdots & & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & \dots & a_{n,j-1} & 0 & a_{n,j+1} & \dots & a_{n,n} \end{vmatrix}\;,}
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\cdot |} für die Bildung der Determinante steht. Aus den Kofaktoren lässt sich wieder eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n \times n} -Matrix bilden, die Kofaktormatrix oder Komatrix (oder auch Comatrix), deren Transponierte als Adjunkte oder komplementäre Matrix bezeichnet wird. Mit ihr kann man die Inverse einer Matrix berechnen. Der Laplace'sche Entwicklungssatz verwendet die Kofaktoren einer Matrix zur Berechnung ihrer Determinante.
Beispiel
Es soll der Minor und der Kofaktor Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\tilde {a}}_{2,3}} der folgenden Matrix bestimmt werden:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = \begin{pmatrix} 1 & 4 & 7 \\ 3 & 0 & 5 \\ -1 & 9 &11 \end{pmatrix}. }
Durch Streichen der zweiten Zeile und dritten Spalte
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\begin{pmatrix}1&4&\Box \\\Box &\Box &\Box \\-1&9&\Box \end{pmatrix}}}
entsteht die Matrix
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{2,3} = \begin{pmatrix} 1 & 4 \\ -1 & 9 \end{pmatrix}.}
Daraus lässt sich der Minor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{2,3}} berechnen.
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle M_{2,3}={\begin{vmatrix}1&4\\-1&9\end{vmatrix}}=9+4=13.}
Für den Kofaktor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde a_{2,3}} gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde a_{2,3} = (-1)^{2+3} \cdot M_{2,3} = -13}
bzw.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde a_{2,3} = \begin{vmatrix} 1 & 4 & 0 \\ 0 & 0 & 1 \\ -1 & 9 & 0 \end{vmatrix} = -13. }
Hauptminoren
Definition
Entstehen Minoren durch Streichungen von Zeilen und Spalten derselben Nummern, spricht man von Hauptminoren, genauer von Hauptminoren k-ter Ordnung, wenn die Größe der Untermatrix angegeben werden soll. Bleiben genau die ersten k Zeilen und Spalten übrig, so spricht man von führenden Hauptminoren k-ter Ordnung.[2] Die führenden Hauptminoren werden mitunter auch natürlich geordnete Hauptminoren genannt.[3] Im deutschsprachigen Raum werden die führenden Hauptminoren oft verkürzt nur Hauptminoren genannt.[4] Dies hängt insbesondere damit zusammen, dass für viele Anwendungen nicht alle Hauptminoren untersucht werden müssen.[3] Außerdem ist im deutschsprachigen Raum die Bezeichnung Hauptabschnittsdeterminante für die Hauptminoren gebräuchlich.[5]
Zur Veranschaulichung mache man sich klar, wie viele Minoren, Hauptminoren und führende Hauptminoren eine 3x3-Matrix hat. Streicht man zunächst gleichzeitig die i-te Zeile und i-te Spalte für i=1,2,3 verbleiben 3 Hauptminoren zweiter Ordnung. Streicht man jeweils mehrere Zeilen und die gleich nummerierten Spalten, tut man dies in diesem Fall also mit zweien, verbleiben 3 Hauptminoren erster Ordnung. Umso mehr Zeilen gestrichen werden, desto kleiner die Ordnung.
Die Hauptminoren haben durch das Hauptminorenkriterium eine Bedeutung für die Feststellung der Definitheit symmetrischer bzw. hermitescher Matrizen.
Beispiel zu Hauptminoren und führenden Hauptminoren
Führende Hauptminoren sind spezielle Hauptminoren, die dadurch entstehen, dass man die Ausgangsmatrix „von ihrem Ende“ her sukzessive um jeweils eine Zeile und Spalte verkürzt und die Determinanten der sich ergebenden Untermatrizen berechnet. So liefert etwa die 3×3-Matrix
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} }
die folgenden 3 Untermatrizen
aus denen sich anschließend die folgenden 3 führenden Hauptminoren berechnen lassen:
- Führender Hauptminor 1. Ordnung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det(A_1) = 1; }
- Führender Hauptminor 2. Ordnung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det(A_2) = \begin{vmatrix} 1 & 2 \\ 4 & 5 \\ \end{vmatrix} = -3; }
- Führender Hauptminor 3. Ordnung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det(A_3) = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 0 \,. }
Wie zu sehen, gibt es dabei nur einen Hauptminor 3. Ordnung, der zugleich führend ist, nämlich die Determinante der gesamten Matrix. Weitere, insbesondere bei der Bestimmung der Semi-Definitheit einer Matrix eine Rolle spielende Hauptminoren wären im Fall obiger Ausgangsmatrix außerdem die folgenden vier Hauptminoren 1. und 2. Ordnung:
- Weitere Hauptminoren 1. Ordnung:
- Weitere Hauptminoren 2. Ordnung: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det \begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \\ \end{pmatrix} = \begin{vmatrix} 1 & 3 \\ 7 & 9 \\ \end{vmatrix} = -12; \quad \det \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \\ \end{pmatrix} = \begin{vmatrix} 5 & 6 \\ 8 & 9 \\ \end{vmatrix} = -3 \,. }
Einzelnachweise
- ↑ Siegfried Bosch: Lineare Algebra. Springer, 2001, ISBN 3-540-41853-9, S. 148
- ↑ Frank Riedel: Mathematik für Ökonomen. Springer; Auflage: 2. verb. Aufl. 2009 (28. September 2009). ISBN 978-3642036484. S. 220
- ↑ a b Alpha C. Chiang, Kevin Wainwright, Harald Nitsch: Mathematik für Ökonomen - Grundlagen, Methoden und Anwendungen. Vahlen; Auflage: 1. Auflage. (Januar 2011). ISBN 978-3800636631. Seite 80
- ↑ Beispielsweise: Norbert Herrmann: Höhere Mathematik: für Ingenieure, Physiker und Mathematiker. Oldenbourg Wissenschaftsverlag; Auflage: 2. überarb. Auflage (1. September 2007). ISBN 978-3486584479. Seite 13
- ↑ Böker, Fred. Formelsammlung für Wirtschaftswissenschaftler: Mathematik und Statistik. Pearson Deutschland GmbH, 2007. S. 194.
Literatur
- Wolfgang Gawronski: Grundlagen der Linearen Algebra. Aula-Verlag, Wiesbaden 1996, ISBN 3-89104-566-2, S. 193