Regression der partiellen kleinsten Quadrate

aus Wikipedia, der freien Enzyklopädie

Regression der partiellen kleinsten Quadrate (Partielle Kleinste-Quadrate-Regression, PLS)[1] ist ein Regressionsmodell, ähnlich zu Hauptkomponentenregression, bei dem die Eingabe iterativ in latente Räume projiziert wird, welche möglichst korreliert mit dem Ausgaberaum sind. Aus diesen Projektionen werden mehrere hierarchische lineare Regressionsmodelle aufgebaut.

Biplot als Ergebnis der PLS: die gestreuten Punkte sind die Input-Scores der Beobachtungen. Pfeile zeigen die Beiträge jedes Features zum ersten und zweiten Input-Loading-Vektor

Einzelnachweise

  1. Svante Wold, Michael Sjöström, Lennart Eriksson: PLS-regression: a basic tool of chemometrics. In: Chemometrics and Intelligent Laboratory Systems. Band 58, Nr. 2, Oktober 2001, S. 109–130, doi:10.1016/S0169-7439(01)00155-1 (elsevier.com [abgerufen am 27. April 2022]).