Total reelle Untermannigfaltigkeit

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Reelle Untermannigfaltigkeit)

Total reelle Untermannigfaltigkeiten kommen in der komplexen Geometrie, einem Teilgebiet der Mathematik, vor. Sie verallgemeinern das Konzept, den reellen Vektorraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n} als Unterraum des komplexen Raumes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Complex^n} aufzufassen.

Definition

Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (M,J)} eine fastkomplexe Mannigfaltigkeit. Das heißt, ist eine glatte Abbildung des Tangentialbündels von auf sich derart, dass die Einschränkungen , für alle , Vektorraumautomorphismen sind und Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle J|_{T_{x}M}\circ J|_{T_{x}M}=-\operatorname {id} _{T_{x}M}} genügen.

Eine immersierte Untermannigfaltigkeit von heißt nun total reell, wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_yN\cap J(T_yN)= \vec 0} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y\in N} gilt.

Von all den Vektoren, die im Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} tangential zu liegen, bildet die fastkomplexe Struktur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J} also ausschließlich den Nullvektor wieder auf einen Tangentialvektor von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} ab. Anschaulich gesprochen haben die Punkte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} also nur "reelle" Tangentialvektoren und keine tatsächlich "komplexen".

Beispiele

  • Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^n\subset\Complex^n} ist total reell.
  • Eine Lagrangesche Untermannigfaltigkeit einer symplektischen Mannigfaltigkeit ist total reell.

Literatur

  • Bang-Yen Chen, "Riemannian submanifolds”, 187–418. in: Handbook of differential geometry. Vol. I. Edited by Franki J. E. Dillen and Leopold C. A. Verstraelen. North-Holland, Amsterdam, 2000. ISBN 0-444-82240-2
  • Michèle Audin, François Lalonde, Leonid Polterovich: "Symplectic rigidity: Lagrangian submanifolds”, 271–321. in: Holomorphic curves in symplectic geometry. Edited by Michèle Audin and Jacques Lafontaine. Progress in Mathematics, 117. Birkhäuser Verlag, Basel, 1994. ISBN 3-7643-2997-1