Satz von Gelfand-Neumark
Die Gelfand-Neumark-Sätze (nach Israel Gelfand und Mark Neumark) und die GNS-Konstruktion bilden die Ausgangspunkte der mathematischen Theorie der C*-Algebren. Sie verbinden abstrakt definierte C*-Algebren mit konkreten Algebren von Funktionen und Operatoren.
Die ersten Beispiele von C*-Algebren, die man direkt nach der Definition angeben kann, sind die Algebra Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_0(X)} der stetigen Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X \rightarrow \mathbb C} auf einem lokalkompakten Hausdorff-Raum X, die im Unendlichen verschwinden (siehe hierzu C0-Funktion), und die Unter-C*-Algebren von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L(H)} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L(H)} die Algebra der beschränkten, linearen Operatoren auf einem Hilbertraum H ist.
Die Gelfand-Neumark-Sätze zeigen, dass dies bis auf isometrische *-Isomorphie bereits alle möglichen C*-Algebren sind. Diese Resultate sind erstaunlich, denn in der Definition der C*-Algebren ist weder von lokalkompakten Hausdorff-Räumen noch von Hilberträumen die Rede.
Satz von Gelfand-Neumark, kommutativer Fall
Ist A eine kommutative C*-Algebra, so gibt es einen lokalkompakten Hausdorff-Raum X und einen isometrischen *-Isomorphismus zwischen A und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_0(X) } .
Konstruktion des lokalkompakten Hausdorffraums
X ist die Menge aller von der Nullabbildung verschiedenen *-Homomorphismen . Zu jedem ist durch eine Abbildung Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\tilde {a}}:X\rightarrow \mathbb {C} } definiert. Schließlich kann man beweisen, dass die Topologie der punktweisen Konvergenz X zu einem lokalkompakten Hausdorff-Raum macht und dass ein isometrischer *-Isomorphismus zwischen A und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C_0(X) } ist.
Bemerkungen
Nach diesem Satz kann ein Element einer kommutativen C*-Algebra wie eine stetige Funktion behandelt werden, was sich zum sogenannten stetigen Funktionalkalkül ausbauen lässt. So ist z. B. das Spektrum eines Elementes nichts weiter als der Abschluss des Bildes der zugehörigen stetigen Funktion.
Dieser Satz eröffnet ein sehr fruchtbares Zusammenspiel zwischen algebraischen Eigenschaften von C*-Algebren und topologischen Eigenschaften lokalkompakter Räume. Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A \cong C_0(X) } , so hat man neben vielen anderen folgende Entsprechungen:
- A hat ein Einselement. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Leftrightarrow} X ist kompakt.
- A ist endlich erzeugt. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Leftrightarrow} X ist homöomorph zu einer Teilmenge eines endlichdimensionalen Vektorraums.
- A ist separabel. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Leftrightarrow} X genügt dem zweiten Abzählbarkeitsaxiom.[1]
- A hat eine abzählbare Approximation der Eins Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Leftrightarrow} X ist σ-kompakt.[2]
- Der Adjunktion eines Einselementes entspricht die Einpunktkompaktifizierung von X.
- Dem Übergang zur Multiplikatorenalgebra entspricht die Stone-Čech-Kompaktifizierung.
Topologische Begriffsbildungen werden in algebraische Eigenschaften kommutativer C*-Algebren übersetzt und dann auf nicht-kommutative C*-Algebren verallgemeinert; das ist häufig der Ausgangspunkt weiterer Theorien. Aus diesem Grunde bezeichnet man die Theorie der C*-Algebren auch als nicht-kommutative Topologie.
Satz von Gelfand-Neumark, allgemeiner Fall
Ist A eine C*-Algebra, so gibt es einen Hilbert-Raum H, so dass A isometrisch *-isomorph zu einer Unter-C*-Algebra von L(H) ist.
Konstruktion des Hilbertraums
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f:A\rightarrow \mathbb C } ein stetiges lineares Funktional mit Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \|f\|=1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(x^*x) \ge 0 } für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in A } . Solche Funktionale nennt man auch Zustände von A. Zum Zustand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} setze Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_f := \{x\in A: f(x^*x) = 0\} } . Dann definiert die Formel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \langle x+N_f, y+N_f\rangle = f(y^*x) } ein Skalarprodukt auf dem Quotientenraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A/N_f } . Die Vervollständigung bzgl. dieses Skalarproduktes ist ein Hilbertraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_f } . Für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in A } lässt sich die Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x+N_f \mapsto ax+N_f} zu einem stetigen linearen Operator Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_f(a) } auf fortsetzen. Dann zeigt man, dass die so erklärte Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_f: A \rightarrow L(H_f) } ein *-Homomorphismus ist. Schließlich konstruiert man aus der Gesamtheit der so gewonnenen Hilberträume Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_f } einen Hilbertraum der gewünschten Art.
Bemerkungen
Ein Element einer abstrakt definierten C*-Algebra kann also wie ein beschränkter linearer Operator auf einem Hilbertraum behandelt werden.
Die oben beschriebene Konstruktion von Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \pi _{f}} aus f heißt die GNS-Konstruktion, wobei GNS für Gelfand, Neumark und Segal steht.
Man nennt *-Homomorphismen der Art Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi: A \rightarrow L(H) } auch Darstellungen von A auf H. Nach obigem Satz hat jede C*-Algebra eine treue (d. h. injektive) Darstellung auf einem Hilbertraum. Eine Darstellung heißt topologisch irreduzibel, wenn es keinen echten von 0 verschiedenen abgeschlossenen Unterraum U von H gibt, für den Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi(a)U \subset U } für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\in A } gilt.
Satz von Segal
Ist A eine C*-Algebra, so ist der Zustandsraum S(A) konvex und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \in S(A)} ist genau dann ein Extremalpunkt, wenn die Darstellung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \pi_f: A \rightarrow L(H_f) } topologisch irreduzibel ist.
Jede irreduzible Darstellung von A ist von der Form für einen extremalen Zustand f von A.
Weitere Bemerkungen
Auf dieser Grundlage wurde eine sehr weit reichende Darstellungstheorie für C*-Algebren entwickelt. C*-Algebren lassen sich durch die Bilder ihrer irreduziblen Darstellungen weiter klassifizieren. So heißt eine C*-Algebra liminal, wenn das Bild einer jeden irreduziblen Darstellung mit der Algebra der kompakten Operatoren zusammenfällt. Eine C*-Algebra heißt postliminal, wenn das Bild einer jeden irreduziblen Darstellung die Algebra der kompakten Operatoren enthält.
Literatur
- Jacques Dixmier: Les C*-algèbres et leurs représentations. 2. édition. Gauthier-Villars, Paris 1969 (Cahiers Scientifiques 29, ISSN 0750-2265).
- I. M. Gelfand, M. A. Neumark: On the embedding of normed rings into the ring of operators in Hilbert space. In: Matematiceskij sbornik. = Recueil mathématique. 54 = NS 12, 1943, ISSN 0368-8666, S. 197–213, online (PDF; 1,88 MB).
- Richard V. Kadison, John R. Ringrose: Fundamentals of the Theory of Operator Algebras. Band 2: Advanced Theory. Academic Press, New York NY 1986, ISBN 0-12-393350-1 (Pure and Applied Mathematics 100, 2).
- I. E. Segal: Irreducible Representations of Operator Algebras. In: Bulletin of the American Mathematical Society. 53, 1947, ISSN 0002-9904, S. 73–88.
- Dirk Werner: Funktionalanalysis. 5. erweiterte Auflage. Springer, Berlin u. a. 2005, ISBN 3-540-21381-3, S. 466ff. (Springer Lehrbuch).