Satz von Müntz-Szász
Der Satz von Müntz-Szász (englisch Müntz-Szász theorem) ist einer der Approximationssätze des mathematischen Gebiets der Analysis. Er geht auf Arbeiten der beiden Mathematiker Herman (Chaim) Müntz und Otto Szász aus den Jahren 1914 bzw. 1916 zurück. Der Satz behandelt, anschließend an den klassischen Approximationssatz von Weierstraß, die Frage der Bedingungen, unter denen die stetigen komplexwertigen Funktionen auf dem abgeschlossenen Einheitsintervall durch Linearkombinationen geeigneter Potenzfunktionen gleichmäßig approximiert werden können.[1]
Formulierung des Satzes
Der Darstellung von Walter Rudin folgend kann der Approximationssatz angegeben werden wie folgt:[2]
- Sei der zum Einheitsintervall gehörige Funktionenraum der stetigen komplexwertigen Funktionen Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle f\colon I\to \mathbb {C} } , versehen mit der Maximumsnorm, und sei eine Folge reeller Zahlen mit .
- Sei weiter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X \subseteq C} der topologische Abschluss des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \C} -linearen Unterraums, der von den Potenzfunktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,\, 1 , t^{p_1} , t^{p_2} , t^{p_3} , \ldots \,\, \left(t \in I \right) \,\,} erzeugt wird.
- Dann gilt:
- (a) Dann und nur dann ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,\, X = C \,\, } , wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{k=1}^\infty { \frac {1} {p_k}} = \infty} gilt .
- (b) Ist jedoch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{k=1}^\infty { \frac {1} {p_k}} < \infty} und ist weiter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,\, p \in {\C \setminus \{0, p_1 , p_2, p_3 , \ldots \} } \,\,} , so ist die Potenzfunktion nicht in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} enthalten.
Andere Version
Der Satz von Müntz-Szász, der bei einigen Autoren oft auch nur als Satz von Müntz bezeichnet wird, gab Anlass zu einer Vielzahl von Verallgemeinerungen und weitergehenden Untersuchungen.[3][4] Dabei wurde und wird, wie es schon Otto Szász in 1916 tat und wie in der Folge von anderen Autoren aufgegriffen wurde, von der Voraussetzung, dass die dort auftretenden Exponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,\, p_1 , p_2, p_3 , \ldots \,\,} positive Zahlen sein sollen, in der Regel abgewichen. Stattdessen werden komplexe Exponenten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,\, z_1 , z_2, z_3 , \ldots \,\,} mit positivem Realteil betrachtet, für die zwei gewisse unendliche Reihen divergieren bzw. konvergieren. Man gewinnt damit etwa die folgende Version:[5][6]
- Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,\,C \,\,} der oben schon gegebene Funktionenraum und sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (z_n)_{n=1,2,\ldots}} eine Folge komplexer Zahlen mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,\, \operatorname{Re} (z_n) > 0 \, (n=1,2,\ldots)} .
- Sei weiter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X \subseteq C} der topologische Abschluss des von den Potenzfunktionen erzeugten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \C} -linearen Unterraums.
- Dann gilt:
- (a) Im Falle, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{k=1}^\infty { \frac {\operatorname{Re} (z_k) } {1+ |z_k|^2}} = \infty} gilt, ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,\, X = C \,\, } .[A 1]
- (b) Andererseits ist im Falle, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{k=1}^\infty { \frac {\operatorname{Re} (z_k) + 1} {1+ |z_k|^2}} < \infty} gilt, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \,\, X \neq C \,\, } .
Literatur
- Günter Meinardus: Approximation von Funktionen und ihre numerische Behandlung (= Springer Tracts in Natural Philosophy. Band 4). Springer Verlag, Berlin, Göttingen, Heidelberg, New York 1964 (MR0176272).
- H. Müntz: Über den Approximationssatz von Weierstrass. In: Festschrift H. A. Schwarz. Springer Verlag, Berlin 1914, S. 303–312.
- Arnold Schönhage: Approximationstheorie (= de Gruyter Lehrbuch). Walter de Gruyter & Co., Berlin, New York 1971 (MR0277960).
- Alan R. Siegel: On the Müntz-Szász theorem for C[0,1]. In: Proceedings of the American Mathematical Society. Band 36, 1972, S. 161–166 (MR0306777).
- Otto Szász: Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen. In: Mathematische Annalen. Band 77, 1916, S. 482–496 (MR1511875).
Einzelnachweise
- ↑ Walter Rudin: Reelle und Komplexe Analysis. 2009, S. 374–377
- ↑ Rudin, op. cit., S. 375
- ↑ Günter Meinardus: Approximation von Funktionen und ihre numerische Behandlung. 1964, S. 6–10
- ↑ Arnold Schönhage: Approximationstheorie. 1971, S. 8 ff., S. 49
- ↑ O. Szász: Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen. In: Math. Ann., 77, S. 482–496
- ↑ A. R. Siegel: On the Müntz-Szász theorem for C[0,1]. In: Proc. Amer. Math. Soc., 36, S. 161–166
Anmerkungen
- ↑ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle |\cdot| } ist die komplexe Betragsfunktion.