Sonnenähnlicher Stern

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Solar analog)

Ein sonnenähnlicher Stern ist ein Stern, der in Größe, Leuchtkraft, Spektralklasse oder je nach Kontext in weiteren Parametern der Sonne ähnlich ist. Der unscharfe Begriff wird in der englischen Fachsprache etwas präziser gefasst durch die drei Attribute

solar-type

,

solar analog

und

solar twin

,[1] wobei diese in der vorstehenden Reihenfolge eine zunehmende Übereinstimmung der Parameter eines Sterns mit denjenigen der Sonne bezeichnen. Die Beobachtung solcher Sterne ist für das Verständnis der Sonneneigenschaften im Vergleich zu anderen Sternen (und umgekehrt) bedeutsam, speziell für Parameter, die bei der Sonne über Messmethoden zugänglich sind, welche bei anderen Sternen nicht anwendbar sind.

Solar-type stars

Die Sonne (links) verglichen mit dem geringfügig kleineren und weniger aktiven Tau Ceti (rechts)

Hier sind Hauptreihensterne mit einem B-V-Farbindex zwischen 0,48 und 0,80 aufgelistet (Sonne: 0,65). (Eine ähnliche Auflistung basierend auf Spektralklassen F8V bis K2V entspräche einem B-V-Farbindex zwischen 0,50 und 1,00.[1])

Solche Sterne zeigen üblicherweise eine hohe Korrelation bezüglich ihrer Rotationsdauer, der Aktivität ihrer Chromosphäre (z. B. H- und K-Emissionslinien des Calciums), und der koronaren Aktivität (z. B. im Röntgenbereich). Da solche Sterne während ihres Verbleibs auf der Hauptreihe einer Abbremsung ihrer Rotation unterliegen, lässt sich aus den genannten Parametern ihr Alter abschätzen. Mamajek und Hillenbrand (2008)[2] haben auf diese Weise das Alter für 108 solche Hauptreihensterne im Spektralklassenbereich F8V–K2V in einem Entfernungsbereich von 16 pc aufgrund ihrer Chromosphären-Aktivität (H- und K-Emissionslinien des Kalziums) abgeschätzt.

In der Tabelle sind Abweichungen von den für die nachfolgende Liste angegebenen Kriterien farbig gekennzeichnet.

Auswahl von
solar-type stars
im Entfernungsbereich 50 Lichtjahre (15,4 pc)
Stern Koordinaten[3] Entfernung[3]
in LJ
Klasse[3] Temperatur
in K
Metallizität
in dex
Anm.
Rektaszension Deklination
Tau Ceti 01h 44m 04,1s 1844385−15° 56′ 15″ 11,9 G8V 5344 −0,52 [4]
40 Eridani A 04h 15m 16,3s 1926090−7° 39′ 10″ 16,5 K1V 5126 −0,31 [4]
82 Eridani 03h 19m 55,7s 1569588.8−43° 04′ 11.2″ 19,8 G8V 5338 −0,54 [5]
Delta Pavonis 20h 08m 43,6s 1338945−66° 10′ 55″ 19,9 G8IV 5604 +0,33 [6]
HR 7722 20h 15m 17,4s 1729841−27° 01′ 59″ 28,8 K0V 5166 −0,04 [6]
Gliese 86 A 21025.902h 10m 25.9s 1495075−50° 49′ 25″ 35,2 K1V 5163 −0,24 [4]
54 Piscium 00h 39m 21,8s 2211502+21° 15′ 02″ 36,1 K0V 5129 +0,19 [5]
V538 Aurigae 05h 41m 20,3s 2532851.8+53° 28′ 51.8″ 39,9 K1V 3500–5000 −0,20 [5]
HD 14412 02h 18m 58,5s 1744355−25° 56′ 45″ 41,3 G5V 5432 −0,46 [5]
HR 4587 12h 00m 44,3s 1897354.3−10° 26′ 45.7″ 42,1 G8IV 5538 0,18 [5]
HD 172051 18h 38m 53,4s 1789693−21° 03′ 07″ 42,7 G5V 5610 −0,32 [5]
72 Herculis 17h 20m 39,6s 2322804+32° 28′ 04″ 46,9 G0V 5662 −0,37 [5]
HD 196761 20h 40m 11,8s 1765374−23° 46′ 26″ 46,9 G8V 5415 −0,31 [6]
Ny² Lupi 15h 21m 48,1s 1518097−48° 19′ 03″ 47,5 G4V 5664 −0,34 [6]

Solar analog stars

Die hier gelisteten Sterne sind photometrisch ähnlich der Sonne und entsprechen folgenden Kriterien:[1]

  • Oberflächentemperatur wie die Sonne ± 500 K, d. h. etwa 5200–6300 K.
  • Metallizität 50–200 % (± 0,3 dex) im Vergleich zur Sonne, d. h. für eine protoplanetare Scheibe kann eine vergleichbare Menge von Staub zur Bildung von Planeten wie bei der Sonne angenommen werden
  • Es sind keine nahen stellaren Begleiter (Umlaufzeit 10 Tage oder weniger) vorhanden. Solche Begleiter würden erhöhte stellare Aktivität bedingen.

Die Tabelle listet solche Sterne im Entfernungsbereich 50 Lichtjahre, die nicht in der untenstehenden Tabelle sonnengleicher Sterne gelistet sind:

Auswahl von
solar analog stars
im Entfernungsbereich 50 Lichtjahre
Stern Koordinaten[3] Entfernung[3]
in LJ
Klasse[3] Temperatur
in K
Metallizität
in dex
Anm.
Rektaszension Deklination
Alpha Centauri A 14h 39m 36,5s 1394998−60° 50′ 02″ 4,37 G2V 5847 +0,24 [7]
Alpha Centauri B 14h 39m 35,0s 1394986−60° 50′ 14″ 4,37 K1V 5316 +0,25 [7]
70 Ophiuchi A 18h 05m 27,3s 2023000+2° 30′ 00″ 16,6 K0V 5314 −0,02 [8]
Sigma Draconis 19h 32m 21,6s 2693940+69° 39′ 40″ 18,8 K0V 5297 −0,20 [9]
Eta Cassiopeiae A 00h 49m 06,3s 2574855+57° 48′ 55″ 19,4 G0V 5941 −0,17 [10]
107 Piscium 01h 42m 29,8s 2201607+20° 16′ 07″ 24,4 K1V 5242 −0,04 [5][11]
Beta Canum Venaticorum 12h 33m 44,5s 2412127+41° 21′ 27″ 27,4 G0V 5930 −0,30 [5]
61 Virginis 13h 18m 24,3s 1818160−18° 18′ 40″ 27,8 G5V 5558 −0,02 [6]
Zeta Tucanae 00h 20m 04,3s 1354771−64° 52′ 29″ 28,0 F9,5V 5956 −0,14 [4]
Chi¹ Orionis A 05h 54m 23,0s 2201634+20° 16′ 34″ 28,3 G0V 5902 −0,16 [5]
Beta Comae Berenices 13h 11m 52,4s 2275241+27° 52′ 41″ 29,8 G0V 5970 −0,06 [5]
HR 4523 A 11h 46m 31,1s 1596999−40° 30′ 01″ 30,1 G5V 5629 −0,29 [6]
61 Ursae Majoris 11h 41m 03,0s 2341206+34° 12′ 06″ 31,1 G8V 5483 −0,12 [5]
HR 4458 A 11h 34m 29,5s 1675047−32° 49′ 53″ 31,1 K0V 5629 −0,29 [6]
HR 511 01h 47m 44,8s 2635109+63° 51′ 09″ 32,8 K0V 5333 +0,05 [5]
Alpha Mensae 06h 10m 14,5s 1255489−74° 45′ 11″ 33,1 G5V 5594 +0,10 [4]
Zeta1 Reticuli 03h 17m 46,2s 1376569−62° 34′ 31″ 39,5 G3–5V 5733 −0,22 [4]
Zeta2 Reticuli 03h 18m 12,8s 1376977−62° 30′ 23″ 39,5 G2V 5843 −0,23 [4]
55 Cancri 08h 52m 35,81s 2281951+28° 19′ 51″ 40,3 G8V 5235 +0,25 [10]
HD 69830 08h 18m 23,9s 1876244−12° 37′ 56″ 40,6 K0V 5410 −0,03 [4]
HD 10307 01h 41m 47,1s 2423648+42° 36′ 48″ 41,2 G1.5V 5848 −0,05 [5]
HD 147513 16h 24m 01,3s 1608865−39° 11′ 35″ 42,0 G1V 5858 +0,03 [6]
58 Eridani 04h 47m 36,3s 1834396−16° 56′ 04″ 43,3 G3V 5868 +0,02 [4]
Ypsilon Andromedae A 01h 36m 47,8s 2412420+41° 24′ 20″ 44,0 F8V 6212 +0,13 [4]
HD 211415 A 22h 18m 15,6s 1466263−53° 37′ 37″ 44,4 G1–3V 5890 −0,17 [4]
47 Ursae Majoris 10h 59m 28,0s 2402549+40° 25′ 49″ 45,9 G1V 5954 +0,06 [4]
Alpha Fornacis A 03h 12m 04,3s 1714079−28° 59′ 21″ 46,0 F8IV 6275 −0,19 [4]
Psi Serpentis A 15h 44m 01,8s 2023055+2° 30′ 55″ 47,9 G5V 5636 −0,03 [5]
HD 84117 09h 42m 14,4s 1764544−23° 54′ 56″ 48,5 F8V 6167 −0,03 [4]
HD 4391 00h 45m 45,6s 1526693−47° 33′ 07″ 48,6 G3V 5878 −0,03 [4]
20 Leonis Minoris 10h 01m 00,7s 2315525+31° 55′ 25″ 49,1 G3 V 5741 +0,20 [5]
Ny Phoenicis 01h 15m 11,1s 1546846−45° 31′ 54″ 49,3 F8V 6140 +0,18 [4]
51 Pegasi 22h 57m 28,0s 2204608+20° 46′ 08″ 50,9 G2,5IVa 5804 +0,20 [4]

Solar twins

Die hier gelisteten Sterne entsprechen ganz oder überwiegend folgenden enggefassten Kriterien (Abweichungen in der Tabelle farbig gekennzeichnet):

  • Oberflächentemperatur wie die Sonne ± 50 K, d. h. etwa 5720–5830 K.
  • Metallizität 89 bis 112 % (± 0,053 dex) im Vergleich zur Sonne, d. h. für eine protoplanetare Scheibe kann eine ähnliche Menge von Staub zur Bildung von Planeten wie bei der Sonne angenommen werden.
  • Der Stern gehört nicht zu einem Mehrfachsternsystem.
  • Das Sternalter entspricht dem der Sonne ± 1 Milliarde Jahre, d. h. etwa 3,5–5,6 × 109 Jahre.
Auswahl von bekannten
solar twins
Stern Koordinaten[3] Entfernung[3]
in LJ
Klasse[3] Temperatur
in K
Metallizität
in dex
Alter
in 109 J.
Anm.
Rektaszension Deklination
Sonne 0,00 G2V 5778 +0,00 4,6 [12]
18 Scorpii 16h 15m 37,3s 1917794−8° 22′ 06″ 45.1 G2Va 5835 +0,04 4,2 [13]
HD 44594 06h 20m 06,1s 1515571−48° 44′ 29″ 84 G3V 5840 +0,15 4,1 [14]
HD 195034 20h 28m 11,8s 2220744+22° 07′ 44″ 92 G5 5760 −0,04 5,1 [15]
HD 138573 15h 32m 43,7s 2105806+10° 58′ 06″ 101 G5IV–V 5710 −0,03 7,8 [16]
HD 142093 15h 52m 00,6s 2151409+15° 14′ 09″ 103 G2V 5841 −0,15 5,0 [16]
HD 98618 11h 21m 29,1s 2582904+58° 29′ 04″ 126 G5V 5851 +0,03 4,7 [13]
HD 143436 16h 00m 18,8s 2000813+0° 08′ 13″ 141 G0 5768 +0,00 3,8 [16]
HD 129357 14h 41m 22,4s 2290332+29° 03′ 32″ 154 G2V 5749 −0,02 8,2 [16]
HD 133600 15h 05m 13,2s 2061724+6° 17′ 24″ 171 G0 5808 +0,02 6,3 [13]
HD 101364 11h 40m 28,5s 2690031+69° 00′ 31″ 217 G5V 5783 +0,01 5,4 [13][17]
HD 197027 20h 41m 45,6s 1728743−27° 12′ 57″ 255 G3V 5723 −0,01 8,2 [18]

Solar siblings

Unter einem solar sibling (Geschwister der Sonne) versteht man einen Stern, der dieselbe chemische Zusammensetzung wie die Sonne hat und somit möglicherweise im selben Sternhaufen entstanden ist. Der einzige Kandidat bisher ist HD 162826. Da dieser Stern etwas größer ist als die Sonne, weicht er zum Beispiel bei der Spektralklasse mit F8 V stärker von der Sonne ab als Solar twins.

Sonnenähnlichkeit nach Lebensfreundlichkeit möglicher Planeten

Die Sonnenähnlichkeit eines Sterns wird gelegentlich auch beschrieben über die Möglichkeit, von einem Planeten in der habitablen Zone umkreist zu werden, der erdähnlich und potentiell in ähnlicher Weise wie die Erde lebensfreundlich ist. Dazu können folgende Parameter berücksichtigt werden:[19]

  • Der Stern ist ein mindestens 3 Milliarden Jahre alter Hauptreihenstern. Dies entspricht einer oberen Grenze für die Masse von ca. 1,5 Sonnenmassen, entsprechend einer frühesten Spektralklasse F5V. Solche Sterne können am Ende ihrer Hauptreihenexistenz eine absolute Helligkeit von bis zu 2,5M erreichen (8,55-fache Sonnenhelligkeit).[19]
  • Der Stern ist kein veränderlicher Stern. Idealerweise wird eine Variabilität von weniger als 1 % vorausgesetzt, praktisch ist eine Grenze von 3 % entsprechend der Genauigkeit verfügbarer Daten. In Mehrfachsternsystemen mit einer hoch exzentrischen Umlaufbahn eines Begleitsterns ist auch die dadurch bedingte veränderliche Strahlungsintensität in der habitablen Zone zu beachten.[19]
  • Die habitable Zone muss dynamisch stabil sein. Für erdähnliche Planeten in Mehrfachsternsystemen mit drei oder mehr Sternen ist die Wahrscheinlichkeit gering, dass ihre Umlaufbahnen langfristig stabil sind (während in Doppelsystemen Umlaufbahnen um einen der Partner (S-Typ) oder aber um ein engstehendes Sternpaar insgesamt (P-Typ) stabil sein können). Auch exzentrische Jupiter können die Umlaufbahnen von Planeten in der habitablen Zone verändern.[19]

Ein Beispiel für einen solchen Stern ist HD 70642.[20]

Siehe auch

Literatur

Einzelnachweise

  1. a b c D. R. Soderblom, J. R. King: Solar-Type Stars: Basic Information on Their Classification and Characterization. In: Solar Analogs: Characteristics and Optimum Candidates. 1998. Abgerufen am 26. Februar 2008.
  2. E. E. Mamajek, L. A. Hillenbrand: Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics. In: Astrophysical Journal. 687, Nr. 2, 2008, S. 1264. arxiv:0807.1686. bibcode:2008ApJ...687.1264M. doi:10.1086/591785.
  3. a b c d e f g h i SIMBAD Astronomical Database. In: SIMBAD. Centre de Données astronomiques de Strasbourg. Abgerufen am 14. Januar 2009.
  4. a b c d e f g h i j k l m n o p q N. C. Santos, G. Israelian, S. Randich, R. J. García López, R. Rebolo: Beryllium anomalies in solar-type field stars. In: Astronomy and Astrophysics. 425, Nr. 3, Oktober 2004, S. 1013–1027. arxiv:astro-ph/0408109. bibcode:2004A&A...425.1013S. doi:10.1051/0004-6361:20040510.
  5. a b c d e f g h i j k l m n o p J. Holmberg, B. Nordstrom, J. Andersen: The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics. In: Astronomy and Astrophysics. 501, Nr. 3, Juli 2009, S. 941–947. arxiv:0811.3982. bibcode:2009A&A...501..941H. doi:10.1051/0004-6361/200811191. See Vizier catalogue V/130.
  6. a b c d e f g h S. G. Sousa, N. C. Santos, M. Mayor, S. Udry, L. Casagrande, G. Israelian, F. Pepe, D. Queloz u. a.: Spectroscopic parameters for 451 stars in the HARPS GTO planet search program. Stellar [Fe/H] and the frequency of exo-Neptunes. In: Astronomy and Astrophysics. 487, Nr. 1, August 2008, S. 373–381. arxiv:0805.4826. bibcode:2008A&A...487..373S. doi:10.1051/0004-6361:200809698. See VizieR catalogue J/A+A/487/373.
  7. a b G. F. Porto de Mello, W. Lyra, G. R. Keller: The Alpha Centauri binary system. Atmospheric parameters and element abundances. In: Astronomy and Astrophysics. 488, Nr. 2, September 2008, S. 653–666. arxiv:0804.3712. bibcode:2008A&A...488..653P. doi:10.1051/0004-6361:200810031.
  8. Luca Casagrande, Chris Flynn, Laura Portinari, Leo Girardi, Raul Jimenez: The helium abundance and ΔY/ΔZ in lower main-sequence stars. In: Monthly Notices of the Royal Astronomical Society. 382, Nr. 4, Dezember 2007, S. 1516–1540. arxiv:astro-ph/0703766. bibcode:2007MNRAS.382.1516C. doi:10.1111/j.1365-2966.2007.12512.x.
  9. Tabetha S. Boyajian, Harold A. McAlister, Ellyn K. Baines, Douglas R. Gies, Todd Henry, Wei‐Chun Jao, David o’Brien, Deepak Raghavan u. a.: Angular Diameters of the G Subdwarf μ Cassiopeiae A and the K Dwarfs σ Draconis and HR 511 from Interferometric Measurements with the CHARA Array. In: The Astrophysical Journal. 683, Nr. 1, August 2008, S. 424–432. arxiv:0804.2719. bibcode:2008ApJ...683..424B. doi:10.1086/589554.
  10. a b A. Jeff Valenti, A. Debra Fischer: Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs. In: The Astrophysical Journal Supplement Series. 159, Nr. 1, Juli 2005, S. 141–166. bibcode:2005ApJS..159..141V. doi:10.1086/430500. See VizieR catalogue J/ApJS/159/141.
  11. V. V. Kovtyukh, C. Soubiran, S. I. Belik, N. I. Gorlova: High precision effective temperatures for 181 F-K dwarfs from line-depth ratios. In: Astronomy and Astrophysics. 411, Nr. 3, 2003, S. 559–564. arxiv:astro-ph/0308429. bibcode:2003A&A...411..559K. doi:10.1051/0004-6361:20031378.
  12. D.R. Williams: Sun Fact Sheet. NASA. 2004. Abgerufen am 23. Juni 2009.
  13. a b c d Jorge Meléndez, Iván Ramírez: HIP 56948: A Solar Twin with a Low Lithium Abundance. In: The Astrophysical Journal. 669, Nr. 2, November 2007, S. L89–L92. arxiv:0709.4290. bibcode:2007ApJ...669L..89M. doi:10.1086/523942.
  14. S. G. Sousa, J. Fernandes, G. Israelian, N. C. Santos: Higher depletion of lithium in planet host stars: no age and mass effect. In: Astronomy and Astrophysics. 512, März 2010, S. L5. arxiv:1003.0405. bibcode:2010A&A...512L...5S. doi:10.1051/0004-6361/201014125.
  15. Y. Takeda, A. Tajitsu: High-Dispersion Spectroscopic Study of Solar Twins: HIP 56948, HIP 79672, and HIP 100963. In: Publications of the Astronomical Society of Japan. 61, 2009, S. 471. arxiv:0901.2509. bibcode:2009PASJ...61..471T.
  16. a b c d Jeremy R. King, Ann M. Boesgaard, Simon C. Schuler: Keck HIRES Spectroscopy of Four Candidate Solar Twins. In: The Astronomical Journal. 130, Nr. 5, November 2005, S. 2318–2325. arxiv:astro-ph/0508004. bibcode:2005AJ....130.2318K. doi:10.1086/452640.
  17. Vázquez, M.; Pallé, E.; Rodríguez, P. Montañés: Is Our Environment Special?. In: The Earth as a Distant Planet: A Rosetta Stone for the Search of Earth-Like Worlds (=  Astronomy and Astrophysics Library). Springer New York, 2010, ISBN 978-1-4419-1683-9, S. 391–418, doi:10.1007/978-1-4419-1684-6. See table 9.1.
  18. Monroe, T. R.: High Precision Abundances of the Old Solar Twin HIP 102152: Insights on Li Depletion from the Oldest Sun. In: The Astrophysical Journal Letters. 774, Nr. 2, 2013, S. 22. arxiv:1308.5744. bibcode:2013ApJ...774L..32M. doi:10.1088/2041-8205/774/2/L32.
  19. a b c d M. C. Turnbull, J. C. Tarter: Target Selection for SETI. I. A Catalog of Nearby Habitable Stellar Systems. In: The Astrophysical Journal Supplement Series. 145, 2002, S. 181. arxiv:astro-ph/0210675. bibcode:2003ApJS..145..181T. doi:10.1086/345779.
  20. Solar System 'twin' found. In: BBC News, 3. Juli 2003.