Matrizenoptik

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Strahlmatrix)

Die Matrizenoptik ist eine Rechenmethode in der paraxialen Optik, bei der die Veränderung von Lichtstrahlen durch optische Bauelemente mit Hilfe von Matrizen dargestellt wird. Diese nennt man (Strahl-)Transfermatrizen oder auch, nach ihren vier Einträgen, ABCD-Matrizen.

Grundlagen

[[Hilfe:Cache|Fehler beim Thumbnail-Erstellen]]:
Veranschaulichung von r, z, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha}

Man betrachtet die Lichtausbreitung entlang der optischen Achse, hier als Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} -Achse definiert. Der Zustand eines Lichtstrahles an einem Punkt (also bei einem bestimmten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} ) kann durch zwei Werte beschrieben werden: seinen Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} von der optischen Achse und den Winkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} , den er mit ihr einschließt. Man kann den Strahl also als Vektor aus diesen beiden Komponenten darstellen:

Der Winkel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} gibt dabei, da er die Neigung des Strahls darstellt, die Änderung von mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} an. Im Rahmen der paraxialen Näherung, also nach dem Grenzübergang, mit dem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} gegen Null gehen, gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sin \alpha = \tan \alpha = \alpha} .

Betrachtet man Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} nicht als infinitesimale, sondern endliche Größen (im Sinne der Gaußschen Optik), muss man die zweite Vektorkomponente als Tangens des Winkels zwischen Strahl und Achse auffassen, also als Steigung des Strahls, damit zwischen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} und der Änderung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} ein linearer Zusammenhang besteht.

Wenn ein Strahl einen Weg in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} -Richtung zurücklegt und dabei evtl. auch abbildende Elemente (Linsen, Spiegel) durchläuft, kann die Änderung des Strahlvektors mit einer Transformationsmatrix beschrieben werden, die sich nach der Differenz der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} -Koordinaten und den Eigenschaften der durchlaufenen Elemente richtet. Man multipliziert die Transformationsmatrix von links an den Strahlvektor, und der resultierende Vektor beschreibt die Eigenschaften des Strahles nach Durchlaufen des Weges:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{pmatrix} r_1 \\ \alpha_1 \end{pmatrix} = \begin{pmatrix}r_2 \\ \alpha_2 \end{pmatrix}}

Die übliche Konvention ist, dass die Strahlrichtung (also die positive Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} -Achse) von links nach rechts verläuft. r wird oberhalb der Achse positiv, unterhalb negativ gezählt. ist positiv, wenn der Strahl nach oben zeigt, und negativ, wenn er nach unten zeigt.

Transfermatrizen wichtiger Elemente

Translation

Ein Strahl, der ein homogenes Medium durchläuft, ändert seine Neigung zur Achse nicht, sondern nur gemäß seiner Neigung seinen Abstand zu ihr.

Breitet sich ein Lichtstrahl ungehindert über die Distanz entlang der optischen Achse aus, ohne abbildende Elemente zu durchlaufen, beschreibt man dies mit der folgenden Matrix des optischen Weges, die nur von der Entfernung und nicht vom durchlaufenen Medium abhängt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T = \begin{bmatrix} 1 & d \\ 0 & 1 \end{bmatrix}; \quad \vec r_2 = \begin{pmatrix} r_2 \\ \alpha_2 \end{pmatrix} = T \, \vec r_1 = T \begin{pmatrix} r_1 \\ \alpha_1 \end{pmatrix}=\begin{pmatrix}r_1 + d \alpha_1 \\ \alpha_1 \end{pmatrix}}

Dabei ändert sich der Strahl selbst nicht, sondern nur der Bezugspunkt des Strahlvektors: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec r_1} gilt am Bezugspunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z = z_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec r_2} am Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z_2} .

Brechung an Fläche

Wird der am Bezugspunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z = z_1} dargestellte Lichtstrahl an einer gekrümmten oder ebenen Fläche bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z_1} gemäß dem Brechungsgesetz gebrochen, ändert sich nur die Strahlrichtung und nicht die -Koordinate. Die Transfermatrix dafür ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R = \begin{bmatrix} 1 & 0 \\ \left(\frac {n_1}{n_2} - 1 \right) \cdot \rho & \frac {n_1}{n_2} \end{bmatrix}} .

Dabei sind und die Brechungsindizes der optischen Medien vor und nach der Grenzfläche. ist die Krümmung der Fläche in ihrem Scheitel (Flächenmitte). ist positiv, wenn der Krümmungsmittelpunkt hinter der Fläche liegt (konvexe Fläche, in positiver Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} -Richtung gesehen). Bei einer sphärischen Fläche mit Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho = 1/r} , und für eine ebene Fläche ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho = 0} .

Dünne Linse

Durch Multiplikation zweier Flächen-Brechungsmatrizen und Anwendung der Linsenschleiferformel erhält man für den Durchgang durch eine dünne Linse am Bezugspunkt des Strahlvektors die Transfermatrix

,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{f}} die Brennweite der Linse ist. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{f}} ist größer 0, wenn die Linse fokussierend wirkt (Sammellinse), und kleiner 0 für eine defokussierende Linse (Zerstreuungslinse).

Dicke Linse

Berücksichtigt man auch die Dicke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit {d}} der Linse zwischen den Linsenoberflächen mit den Krümmungsradien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{{R}_{1}}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{{R}_{2}}} , erhält man für den Durchgang durch die dicke Linse die Transfermatrix

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D=\left[ \begin{matrix} 1-\frac{d}{{{R}_{1}}}\frac{{{n}_{L}}-n}{{{n}_{L}}} & \frac{d\, n}{{{n}_{L}}} \\ (\frac{{{n}_{L}}-n}{n})\left( \frac{1}{{{R}_{2}}}-\frac{1}{{{R}_{1}}}-\frac{d}{{{R}_{1}}{{R}_{2}}}\frac{{{n}_{L}}-n}{{{n}_{L}}} \right) & 1+\frac{d}{{{R}_{2}}}\frac{{{n}_{L}}-n}{{{n}_{L}}} \\ \end{matrix} \right] = \left[ \begin{matrix} 1 & {{H}_{2}} \\ 0 & 1 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & 0 \\ \frac{1}{-f} & 1 \\ \end{matrix} \right]\left[ \begin{matrix} 1 & {{H}_{1}} \\ 0 & 1 \\ \end{matrix} \right]} ,

Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit {n}_{L}} der Brechungsindex des Linsenmaterials, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit {n}} der Brechungsindex des Umgebungsmediums und die Brennweite der Linse. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{{H}_{1}}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathit{{H}_{2}}} sind die Abstände der objekt- bzw. bildseitigen Hauptebene von den Bezugspunkten, für die der Strahlvektor jeweils gilt, etwa die Oberflächen der Linse. Die drei Teilmatrizen bezeichnen von rechts nach links, also in Anwendungsreihenfolge, die Translation des Strahls zur objektseitigen Hauptebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_1} , die Brechung (bei der der Strahl zur bildseitigen Hauptebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_2} versetzt wird) und die Translation von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H_2} zum neuen Bezugspunkt.

Spiegel

Für einen Spiegel der Scheitelkrümmung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho} erhält man mit dem Reflexionsgesetz die Matrix

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K = \begin{bmatrix} 1 & 0 \\ -2 \rho & 1 \end{bmatrix}} ,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \rho = 0} einen ebenen Spiegel beschreibt. ist positiv für einen Hohlspiegel und negativ für einen konvexen Spiegel. Bei einem sphärischen Spiegel ist der Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r = 1 / \rho} . Zu beachten ist die Konvention, dass die optische Achse mit der generellen Propagationsrichtung des Lichts übereinstimmt, das heißt am Spiegel ihre Richtung umkehrt.

Hauptebenen

Aus einer Transfermatrix können die äquivalente Brennweite einer dünnen Linse und die Hauptebenen des zugehörigen optischen Systems bestimmt werden. Dabei gibt H1 den Abstand zwischen der Eintrittsebene des Strahls und H2 den Abstand zwischen der Austrittsebene des Strahls und der jeweiligen Hauptebene H1 bzw. H2 an.

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left[ \begin{matrix} A & B \\ C & D \\ \end{matrix} \right]\,=\left[ \begin{matrix} 1 & {{H}_{2}} \\ 0 & 1 \\ \end{matrix} \right]\ \,\left[ \begin{matrix} 1 & 0 \\ -{{f}^{-1}} & 1 \\ \end{matrix} \right]\ \left[ \begin{matrix} 1 & {{H}_{1}} \\ 0 & 1 \\ \end{matrix} \right]=\left[ \begin{matrix} 1-\frac{{{H}_{2}}}{f} & {{H}_{1}}+{{H}_{2}}-\frac{{{H}_{1}}{{H}_{2}}}{f} \\ -\frac{1}{f} & 1-\frac{{{H}_{1}}}{f} \\ \end{matrix} \right]}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f=-\frac{1}{C}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{H}_{1}}=\frac{D-1}{C}}
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {{H}_{2}}=\frac{A-1}{C}}

Somit wird es möglich, ein optisches System mit mehreren Linsen durch nur eine äquivalente Brennweite auszudrücken.

Kombination von Elementen

Durchläuft ein Strahl mehrere optische Elemente hintereinander, so werden nacheinander die entsprechenden Transfermatrizen auf den Strahlvektor angewandt, was äquivalent dazu ist, sie zu multiplizieren und dann die Produktmatrix auf den Vektor anzuwenden. Dabei gelten die Regeln der Matrizenmultiplikation: durchläuft der Strahl drei Elemente in der Reihenfolge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_1, T_2, T_3} , so wird das Produkt in der Reihenfolge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_3 \cdot T_2 \cdot T_1} gebildet.

So ergeben sich die Matrizen komplizierterer Systeme als Produkt der Matrizen der elementaren Systemteile, etwa die einer dicken Linse aus denen einer Linsenoberfläche, einer Translation durch das Linsenglas und einer weiteren Fläche, oder die eines Linsensystems aus einer Abfolge von Linse, Translation, Linse, ... bzw. Fläche, Translation, Fläche, ....

Alternative Konvention

Von einigen Autoren wird abweichend zur hier verwendeten Konvention der Strahlvektor definiert als , wobei n der Brechungsindex des Mediums am Ort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (r,z)} ist. Dies hat zur Folge, dass etwa in der Matrix für Translation durch ein Medium für dieses zusätzliche n korrigiert werden muss, sie lautet in dieser Konvention Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T = \begin{bmatrix} 1 & \frac {d}{n} \\ 0 & 1 \end{bmatrix}} und ist somit selbst explizit vom Medium abhängig. Der Vorteil dieser Konvention ist, dass die Matrix für Brechung an einer ebenen Fläche zur Einheitsmatrix wird.

Manche Autoren vertauschen auch die beiden Einträge des Strahlenvektors, sodass er folgendermaßen definiert ist:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec r (z)= \begin{pmatrix} n \alpha(z) \\ r(z) \end{pmatrix}} .

Die Matrizen müssen entsprechend geändert (um 180° gedreht) werden.[1][2]

Weitere Anwendungen

Gaußstrahlen

Die Anwendung der Matrizenoptik ist nicht auf die geometrische Optik beschränkt, sie lässt sich durch den Übergang von Matrizen zu Möbius-Abbildungen auch auf das Konzept der Gauß-Strahlen übertragen. Hierzu bleiben die ABCD-Matrizen und ihre Multiplikationsregeln komplett erhalten, man wendet sie aber nicht mehr per Multiplikation auf einen Strahlvektor an, sondern auf den Strahlparameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q} gemäß folgender Vorschrift:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q_1(z) = \frac{Aq_0+B}{Cq_0+D}} .

Der Strahlparameter berechnet sich hierbei nach mit dem Krümmungsradius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} des Gaußschen Strahls, der Wellenlänge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} und dem Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle w} des Gauß-Strahls (alternativ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle q(z) = z + iz_0} ).

Polarisation

Ein zur geometrischen Matrizenoptik analoges Verfahren wird verwendet, um die Veränderung der Polarisation beim Durchgang durch optische Elemente zu berechnen. Der Polarisationszustand wird durch Jones-Vektoren ausgedrückt und mit Jones-Matrizen manipuliert.

Technische Nutzung

Neben der mathematischen Anwendung des Verfahrens mit z. B. Programmen wie MATLAB zur Berechnung von Strahlengängen, werden Adaptionen desselben dazu herangezogen, um Strahlengänge bewegter Linsensysteme zu antizipieren und zu erwartende Abbildungen vorauszuberechnen, wie z. B. bei der Echtzeit-Objektverfolgung oder der Justage von verbundenen Linsensystemen zur Fokussierung, wie astronomischen Spiegeln.

Literatur

  • D. Meschede: Optik, Licht und Laser. B.G. Teubner, Stuttgart/ Leipzig 2005, ISBN 3-519-13248-6.
  • F. Pedrotti, L. Pedrotti, Werner Bausch, Hartmut Schmidt: Optik. Prentice Hall, München u. a. 1996, ISBN 3-8272-9510-6.

Weblinks

Einzelnachweise

  1. E. Hecht: Optik. 4. Auflage. Oldenbourg, München 2005, ISBN 3-486-27359-0.
  2. W. & U. Zinth: Optik – Lichtstrahlen – Wellen – Photonen. 2, Auflage. Oldenbourg, München, 2009, ISBN 978-3-486-58801-9.