Teilgraph
Der Begriff Teilgraph beschreibt in der Graphentheorie eine Beziehung zwischen zwei Graphen. Ein anderes Wort für Teilgraph ist Untergraph. Ein Graph ist Teilgraph des Graphen , wenn alle Knoten und Kanten von auch in enthalten sind. Anders gesagt: Ein Teilgraph entsteht aus einem Graphen , indem einige Knoten und Kanten aus entfernt werden. Dabei müssen beim Entfernen eines Knotens auch alle inzidenten Kanten mit entfernt werden.
Definitionen
Ein Graph heißt Teilgraph oder Untergraph oder Subgraph von , wenn seine Knotenmenge Teilmenge von und seine Kantenmenge Teilmenge von ist, also und gilt.
Umgekehrt heißt dann Supergraph oder Obergraph von .
Diese Bezeichnungen sind nicht einheitlich. Im unten angegebenen Lehrbuch von Klaus Wagner[1] wird in dieser Allgemeinheit nur der Begriff Teilgraph verwendet und ein Untergraph als Teilgraph definiert, der zusätzlich die Eigenschaft hat, dass jede Kante aus , die zwei Knoten aus verbindet, auch eine Kante in ist. Im Lehrbuch von Claude Berge[2] bedeutet Teilgraph zusätzlich, dass ist, und Untergraph, dass und jede Kante aus , die zwei Knoten aus verbindet, auch eine Kante in ist, der allgemeine Fall heißt dann dort Teil-Untergraph. Es empfiehlt sich daher, bei jedem Autor, die verwendete Definition zu prüfen.
Bei einem knotengewichteten bzw. kantengewichteten Graphen wird von einem Teilgraphen zudem verlangt, dass die Gewichtsfunktion von kompatibel zu der Gewichtsfunktion von sein muss, d. h. für jeden Knoten gilt bzw. für jede Kante gilt .
Gilt für einen Teilgraphen zusätzlich, dass alle Kanten zwischen den Knoten in enthält, die auch in vorhanden sind, so bezeichnet man als den durch induzierten Teilgraphen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_2} und notiert diesen auch mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_2[V_1]} . Ein induzierter Teilgraph ist also immer eindeutig durch den Obergraphen und die gewählte Knotenmenge bestimmt. Für eine Knotenmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W \subseteq V} bezeichnet man mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G \setminus W} den induzierten Teilgraphen, der aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G=(V,E)} durch Weglassen der Knoten aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} und aller mit diesen Knoten inzidenten Kanten entsteht, also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G \setminus W = G[V \setminus W]} .
Ein Teilgraph Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_1=(V,E_1)} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_2=(V,E_2)} , der alle Knoten seines Obergraphen enthält, wird aufspannender Teilgraph oder Faktor genannt.
Beispiele
In der folgenden Abbildung sind die Graphen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_1} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_3} Teilgraphen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} , aber nur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_3} sind induzierte Teilgraphen. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_3} entsteht dabei aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} durch Weglassen der Knoten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1,3,7} und ihrer inzidenten Kanten, also ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_3=G \setminus \{1,3,7\}} . Gleichzeitig ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_3} auch ein induzierter Teilgraph von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_2} .
Siehe auch
Literatur
- Reinhard Diestel: Graphentheorie. 4. Auflage. Springer-Verlag, Berlin Heidelberg 2010, ISBN 978-3-642-14911-5. (354 Seiten, online)
- Lutz Volkmann: Fundamente der Graphentheorie, Springer (Wien) 1996, ISBN 3-211-82774-9 (neuere Online-Version "Graphen an allen Ecken und Kanten"; PDF; 3,51 MB)