Vielfach-Zetafunktion
In der Mathematik sind Vielfach-Zetafunktionen (engl.: multiple zeta functions) eine Verallgemeinerung der Riemannschen Zeta-Funktion, definiert durch
Obige Reihe konvergiert wenn für alle , sie kann (analog zur Riemannschen Zeta-Funktion) durch analytische Fortsetzung als meromorphe Funktion auf definiert werden.
Die Werte für positive, ganzzahlige mit werden als Multiple Zeta-Werte (engl.: multiple zeta values, MZVs) bezeichnet. Man nennt das „Gewicht“ und die „Länge“ des Arguments.
Die Vielfach-Zetafunktionen wurden erstmals in der Korrespondenz zwischen Leonhard Euler und Christian Goldbach definiert. Euler bewies die Reduktionsformel für :
- .
Zum Beispiel ist .
Allgemein kann man, wenn ungerade ist, die Zweifach-Zetafunktion als rationale Linearkombination von und mit darstellen.
Eine Vermutung von Alexander Goncharov besagte, dass die Perioden von über unverzweigten gemischten Tate-Motiven sich als -Linearkombinationen von Werten der Vielfachzetafunktion darstellen lassen.[1] Für den Spezialfall des durch den Modulraum von Kurven des Geschlechts 0 mit markierten Punkten und die relative Kohomologie definierten Tate-Motivs wurde dies zunächst von Francis Brown 2007 in seiner Dissertation bewiesen.[2] Die allgemeine Form von Goncharovs Vermutung bewies Brown dann in einer 2012 in Annals of Mathematics veröffentlichten Arbeit.[3]
Literatur
- ↑ Goncharov: Multiple polylogarithms and mixed Tate motives
- ↑ Brown: Multiple zeta values and periods of moduli spaces, Annales Scientifiques de l´ENS, Band 42, 2009, S. 371–489, Abstract
- ↑ Brown: Mixed Tate motives over Z
Weblinks
Deligne: "Le groupe fondamental de la droite projective moins trois points" (PDF; 4,2 MB) erklärt den Zusammenhang zwischen gemischten Tate-Motiven und Vielfach-Zetafunktionen.