Wirkung (Physik)

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Wirkungsintegral)
Physikalische Größe
Name Wirkung
Formelzeichen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S}
Größen- und
Einheitensystem
Einheit Dimension
SI J·s = kg·m2·s−1 M·L2·T−1

Die Wirkung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} ist in der theoretischen Physik eine physikalische Größe mit der Dimension Energie mal Zeit oder Länge mal Impuls. Sie hat also dieselbe Dimension wie der Drehimpuls, ist aber in der Quantenmechanik im Gegensatz zum Drehimpuls nicht gequantelt.

Die Wirkung ist ein Funktional, das die physikalisch durchlaufenen Bahnen in der Menge der denkbaren Bahnen auszeichnet. Die Bewegungsgleichungen der physikalisch durchlaufenen Bahnen besagen, dass bei festgehaltenem Anfangs- und Endpunkt im Phasenraum die Wirkung der physikalischen Bahn unter allen denkbaren Bahnen einen lokalen Extremwert annimmt. Diese Bedingung heißt Hamiltonsches Prinzip oder Prinzip der kleinsten Wirkung.[1]

Wirkung eines Punktteilchens

In der klassischen Mechanik ordnet die Wirkung jeder zweifach differenzierbaren Bahn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\colon t \mapsto x(t)\,} , die ein Punktteilchen mit der Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} von einem Anfangspunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline{x}=x(t_1)} zu einem Endpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{x}=x(t_2)} durchläuft, den Wert des Integrals

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S[\Gamma] = \int_{t_1}^{t_2} L\!\left(t,x(t),\frac{\mathrm d x}{\mathrm d t}(t)\right)\,\mathrm d t}

zu. Dabei ist in Newtons Mechanik die Lagrangefunktion Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle L(t,x,v)} eines Teilchens der Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} , das sich im Potential Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V(t,x)} bewegt, die Differenz von kinetischer und potentieller Energie als Funktion der Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} , des Ortes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} und der Geschwindigkeit ,

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L(t,x,v) = \frac{1}{2} \, m \, v^2 - V(t,x)\ .}

Im Integranden der Wirkung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S[\Gamma]} wird für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} der Ort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x(t)} der Bahn zur Zeit und für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v} seine Zeitableitung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{\mathrm d x}{\mathrm d t}(t)} eingesetzt. Das Integral dieser verketteten Funktion der Zeit ist die Wirkung der Bahn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma\colon t\mapsto x(t)} .

Verglichen mit der Wirkung aller anderen zweifach differenzierbaren Bahnen, die anfänglich durch und schließlich durch laufen, ist die Wirkung der physikalischen Bahn minimal, denn ihre Bewegungsgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m \frac{\mathrm d^2 x}{\mathrm d t^2} + \partial_x V(t,x) = 0}

ist die Euler-Lagrange-Gleichung der Wirkung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S} .

Beispiel: harmonischer Oszillator

Beispielsweise ist

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L(t,x,v)= \frac 1 2 m v^2 - \frac 1 2 m \omega^2 x^2 }

die Lagrangefunktion eines harmonischen Oszillators mit Masse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} und der Federkonstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa=m \omega^2} .

Die physikalischen Bahnen genügen der Euler-Lagrange-Gleichung, der zufolge zu allen Zeiten die Euler-Ableitung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac {\partial L}{\partial x} - \frac {\mathrm d} {\mathrm d t} \frac {\partial L}{\partial v} = -m \left( \omega^2 x + \frac {\mathrm d} {\mathrm d t} v\right) }

verschwindet, wenn man für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} den Ort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x(t)} einsetzt, der zur Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} durchlaufen wird, und für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v } die Zeitableitung der Bahn Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}x(t)} .

Die zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L} gehörigen physikalischen Bahnen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t \mapsto x(t)} erfüllen also

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -m \left( \frac {\mathrm d^2} {\mathrm d t^2} x(t) + \omega^2 x(t) \right) = 0 } .

Jede Lösung dieser Gleichung ist von der Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma_{A,\alpha}\colon t \mapsto x(t) = A \cos(\omega t - \alpha) } ,

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A } die Amplitude der Schwingung und ihre Phasenverschiebung ist.

Zur Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_1} durchläuft sie den Ort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \underline x = A \cos(\omega t_1 - \alpha)} und zur Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_2} den Ort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline x = A \cos(\omega t_2 - \alpha)} .

Ihre Wirkung ist das Integral

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S[\Gamma_{A,\alpha}]=\int_{t_1}^{t_2}\mathrm d t\, \frac 1 2 m \,A^2 \,\omega^2 \bigl(\sin^2 (\omega t-\alpha) -\cos^2 (\omega t-\alpha) \bigr )} .

Das Integral kann mit dem Additionstheorem

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cos^2 \beta - \sin^2 \beta = \cos(2\beta) }

leicht ausgewertet werden, aber das ist für unsere Betrachtungen unerheblich,

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle S[\Gamma_{A,\alpha}]= -\int_{t_1}^{t_2}\mathrm d t\, \frac 1 2 m \,A^2 \,\omega^2 \cos 2( \omega t-\alpha)= \frac 1 4 m \,A^2 \omega \bigl(\sin 2( \omega t_2-\alpha)- \sin 2( \omega t_1-\alpha)\bigr)} .

Auf jeder anderen Bahn

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma_{A,\alpha}+\delta\colon t \mapsto A \cos ( \omega t - \alpha) + \delta(t)} ,

die zwischenzeitlich um Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta(t)} ein wenig von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Gamma_{A,\alpha}} abweicht, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta(t_1)=\delta(t_2)=0} , unterscheidet sich die Wirkung in erster Ordnung in um

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta S[\Gamma_{A,\alpha},\delta] = S[\Gamma_{A,\alpha}+\delta]-S[\Gamma_{A,\alpha}] = \int_{t_1}^{t_2}\mathrm d t\, A\, m\, \omega \bigl( -\sin (\omega t-\alpha) \dot \delta(t) - \omega \cos (\omega t-\alpha) \delta(t) \bigr )\ .}

Partielle Integration wälzt im ersten Term die Ableitung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot \delta} ohne Randterme (weil dort Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta} verschwindet) mit einem Minuszeichen auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sin(\omega t-\alpha)} ab und ergibt für alle zwischenzeitlichen Änderungen das Negative des zweiten Terms

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \delta S = \int_{t_1}^{t_2}\mathrm d t\, A\, m \,\omega^2 \bigl( \cos (\omega t-\alpha) \delta(t) - \cos (\omega t-\alpha) \delta(t) \bigr ) = 0\ .}

Es ist also die Wirkung jeder physikalischen Bahn stationär unter allen zwischenzeitlichen Änderungen.

Bedeutung in der Theoretischen Physik

Die Wirkung als Funktional von Bahnen oder Feldern ist auch grundlegend für

Literatur

Lehrbücher

  • Herbert Goldstein, Charles P. Poole, John L. Safko: Klassische Mechanik (= Lehrbuch Physik). 3., vollst. überarb. und erw. Auflage. Wiley-VCH, Weinheim 2006, ISBN 978-3-527-40589-3.
  • Andreas Knauf: Mathematische Physik: klassische Mechanik (= Masterclass). 2., überarbeitete und ergänzte Auflage. Springer Spektrum, Berlin [Heidelberg] 2017, ISBN 978-3-662-55775-4, doi:10.1007/978-3-662-55776-1.
  • Friedhelm Kuypers: Klassische Mechanik. 10. Auflage. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2016, ISBN 978-3-527-33960-0.
  • Florian Scheck: Theoretische Physik. 1: Mechanik, von den Newtonschen Gesetzen zum deterministischen Chaos (= Springer-Lehrbuch). 8. Auflage. Springer, Berlin Heidelberg 2007, ISBN 978-3-540-71377-7.

Weiterführende Literatur

  • Agoston Budó: Theoretische Mechanik (= Hochschulbücher für Physik. Band 25). 8. Auflage. DVW, Berlin 1976 (uni-leipzig.de).
  • V. I. Arnolʹd: Mathematical methods of classical mechanics (= Graduate texts in mathematics. Band 60). 2nd ed Auflage. Springer, New York 1997, ISBN 978-0-387-96890-2 (englisch).
  • Cora S. Lüdde, Reiner M. Dreizler: Theoretical Mechanics (= Graduate Texts in Physics). Springer Berlin Heidelberg, Berlin, Heidelberg 2010, ISBN 978-3-642-11137-2, doi:10.1007/978-3-642-11138-9 (englisch).

Einzelnachweise

  1. L. D. Landau, E. M. Lifschiz: Mechanik (= Lehrbuch der theoretischen Physik). 14., korr. Auflage. Verlag Europa-Lehrmittel, Haan-Gruiten 2016, ISBN 978-3-8085-5612-2.

Weblinks