„Lineares zeitinvariantes System“ – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
imported>Reseka(166209)
(Änderung 222380579 von Dr.Kup rückgängig gemacht; Das sind keine Beispiele für typische „lineare zeitinvariante Systeme“.)
Markierung: Rückgängigmachung
 
(kein Unterschied)

Aktuelle Version vom 26. April 2022, 16:08 Uhr

Als ein lineares zeitinvariantes System, auch als LZI-System und LTI-System (englisch linear time-invariant system) wird ein System bezeichnet, wenn sein Verhalten sowohl die Eigenschaft der Linearität aufweist als auch unabhängig von zeitlichen Verschiebungen ist. Diese Unabhängigkeit von zeitlichen Verschiebungen wird als Zeitinvarianz bezeichnet.

Die Bedeutung dieser Systeme liegt darin, dass sie besonders einfache Transformationsgleichungen aufweisen und der Systemanalyse damit leicht zugänglich sind. Viele technische Systeme wie in der Nachrichten- oder Regelungstechnik weisen, zumindest in guter Näherung, diese Eigenschaften auf. Ein System kann in diesem Zusammenhang beispielsweise ein Übertragungssystem sein. Einige LZI-Systeme lassen sich durch lineare gewöhnliche Differentialgleichungen (oder Differenzengleichungen) mit konstanten Koeffizienten beschreiben.

Eigenschaften

Linearität

Überlagerungsprinzip

Ein System heißt dann linear, wenn jede Summe von beliebig vielen Eingangssignalen zu einer dazu proportionalen Summe von Ausgangssignalen führt. Es muss damit das Superpositionsprinzip, auch als Überlagerungsprinzip bezeichnet, gelten. Mathematisch wird dies durch eine Transformation , welche die Übertragungsfunktion des Systems darstellt, zwischen den Eingangs- und Ausgangssignalen beschrieben:

Die konstanten Koeffizienten stellen die einzelnen Proportionalitätsfaktoren dar.

Anschaulich wird dabei am Eingang des Systems ein Signal angelegt und die Reaktion beobachtet. Danach wird davon unabhängig die Reaktion auf ein zweites Signal untersucht. Beim Anlegen eines Eingangssignals, das die Summe aus den beiden zuvor begutachteten Signalen bildet, lässt sich feststellen, dass die Reaktion am Ausgang der Addition der beiden einzelnen Antworten entspricht, wenn das System linear ist.

Zeitinvarianz

Verschiebungsprinzip

Ein System heißt dann zeitinvariant, wenn für jede beliebige Zeitverschiebung um t0 gilt:

Für die Zeitinvarianz muss das Ausgangssignal den Zeitbezug zum Eingangssignal beibehalten und identisch reagieren. Dieses Prinzip wird auch als Verschiebungsprinzip bezeichnet.

Zusammenhang mit Faltungsintegral

Das beliebig verlaufende Eingangssignal kann durch Anwendung des Superpositionssatzes und der Zeitinvarianz durch eine zeitliche Abfolge von einzelnen Rechteckimpulsen angenähert werden. Im Grenzübergang für einen Rechteckimpuls, dessen Dauer gegen 0 geht, nähert sich das Ausgangssignal einer Form an, welche nur noch von der Übertragungsfunktion des Systems abhängt, aber nicht mehr von dem Verlauf des Eingangssignals.

Mathematisch werden diese gegen die zeitliche Dauer von null strebenden Rechteckimpulse durch Dirac-Impulse beschrieben und die Summen in der Transformationsgleichung gehen in Integrale über. Das Eingangssignal lässt sich gleichwertig als Faltungsintegral bzw. mit dem Symbol für die Faltungsoperation ausdrücken als:

Das Ausgangssignal ist über das Faltungsintegral

mit dem Eingangssignal verknüpft, wobei die Impulsantwort des Systems darstellt. Ist das Eingangssignal ein Dirac-Impuls, so ist die Impulsantwort. Die Übertragungsfunktion des Systems ist die Laplace-Transformierte der Impulsantwort.

Lösung von linearen zeitinvarianten Differentialgleichungen

Gegeben ist ein explizites lineares System von Differentialgleichungen in der Form

mit dem Zustandsvektor , der Systemmatrix , dem Eingang , dem Eingangsvektor und der Anfangsbedingung . Die Lösung besteht aus einem homogenen und einem partikulären Anteil.

Homogene Lösung

Man erhält die homogene Differentialgleichung, indem man den Eingang gleich null setzt.

Diese Lösung kann nun durch eine Taylorreihendarstellung beschrieben werden:

wobei die Einheitsmatrix ist. Setzt man diese Lösung obere Gleichung ein, erhält man:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \frac{d}{dt}(\phi(t)x_0)&=A\,\phi(t)\,x_{0}\\ (\phi_{1}+2\,\phi_{2}\,t+...+n\,\phi_{n}\,t^{n-1}+...)x_0&=(A+A\phi_{1}t+A\phi_{2}t^{2}+...+A\phi_{n}t^{n}+...)\,x_0 \end{align} }

Nun können durch einen Koeffizientenvergleich die unbekannten Matrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi_{n} } bestimmt werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \phi_{1} &= A \\ \phi_{2}&=\frac{1}{2}A\,\phi_{1}=\frac{1}{2!}A^{^2} \\ \phi_{3}&=\frac{1}{3}A\,\phi_{2}=\frac{1}{3!}A^{3} \\ &... \\ \phi_{n}&=\frac{1}{n!}A^{n}. \end{align} }

Folgende Schreibweise ist für die Fundamentalmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi_{n} } weit verbreitet:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \phi(t)=e^{At}=E+At+\frac{1}{2!}A^{2}t^{2}+\frac{1}{3!}A^{3}t^{3}+...+\frac{1}{n!}A^{n}t^{n}+... \end{align} }

Partikuläre Lösung

Ausgehend von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u(t)\neq0 } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_{0}=0 } folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \frac{d}{dt}x(t)=A\,x(t)+b\,u(t) \end{align} }

Die partikuläre Lösung sucht man in der Form:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} x_{p}(t)=\phi(t)\xi(t)=e^{At}\xi(t), \end{align} }

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi(t) } ein unbekannter Funktionsvektor mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi(0)=0 } ist. Aus den beiden oberen Gleichungen folgt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \frac{d}{dt}x_{p}(t)&=A\,x_{p}(t)+b\,u(t)\\ \xi(t)\frac{d}{dt}\phi(t)+\phi(t)\frac{d}{dt}\xi(t)&=A\,x_{p}(t)+b\,u(t)\\ A\,\phi(t)\xi(t)+\phi(t)\frac{d}{dt}\xi(t)&=A\,x_{p}(t)+b\,u(t)\\ A\,x_{p}(t)+\phi(t)\frac{d}{dt}\xi(t)&=A\,x_{p}(t)+b\,u(t)\\ \end{align} }

Damit kann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \xi(t) } bestimmt werden:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \frac{d}{dt}\xi(t)=\phi^{-1}(t)bu(t)\\ \end{align} }

Man erhält durch Integration unter Zuhilfenahme der Eigenschaften der Fundamentalmatrix:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \phi(t)\xi(t)&=\phi(t)\int_{0}^{t}\phi^{-1}(\tau)bu(\tau)d\tau\\ x_{p}(t)&=\int_{0}^{t}\phi(t-\tau)bu(\tau)d\tau\\ x_{p}(t)&=\int_{0}^{t}e^{A(t-\tau)}bu(\tau)d\tau\\ \end{align} }

Die Lösung einer linearen zeitinvarianten Differenzialgleichung lautet:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} x(t)=e^{At}x_{0}(t)+\int_{0}^{t}e^{A(t-\tau)}bu(\tau)d\tau\\ \end{align} }

LTI-Systeme in verschiedenen Formen der Darstellung

Der folgende Teil beschränkt sich auf Systeme mit endlich vielen inneren Freiheitsgraden.

Zeitbereich

Die gebräuchlichste Systemdarstellung im Zeitbereich, die Zustandsraumdarstellung, hat die allgemeine Form

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{matrix} \dot x(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t)\end{matrix}}

Hierin sind die Vektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u} Eingangsvektor, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} Zustandsvektor und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} Ausgangsvektor. Sind die Matrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} Systemmatrix, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} Eingangsmatrix, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} Ausgangsmatrix und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D} Durchgriffsmatrix konstant, so ist das System linear und zeitinvariant. Zur Addition und Multiplikation von Vektoren und Matrizen siehe Matrix (Mathematik).

Bildbereich

Für einfachere kontinuierliche Systeme, insbesondere SISO-Systeme (Single Input, Single Output Systeme) mit nur je einer Ein- und Ausgangsgröße, wird häufig die Beschreibung durch eine Laplace-Übertragungsfunktion (im Laplace-"Bildbereich" oder "Frequenzbereich") gewählt:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G(s) = \frac{Z(s)}{N(s)}}

Hierin ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z} das Zählerpolynom in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} , und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} das Nennerpolynom in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} . Sind alle Koeffizienten beider Polynome konstant, ist das System zeitinvariant. Die Übertragungsfunktion bietet sich zur Stabilitätsanalyse und zur graphischen Darstellung als Ortskurve oder Bodediagramm an.

Für diskrete Systeme erfolgt eine entsprechende Beschreibung durch die z-Übertragungsfunktion an (mit der komplexen z-Ebene als Bildbereich)

Beispiele

  • Elektrotechnik: Filter-Schaltungen oder Verstärker
  • Mechanik: Getriebe
  • Thermodynamik: Zentralheizung, Motorkühlung
  • Wandler zwischen den zuvor genannten Systemarten: Elektromotor (Strom-Kraft), Temperatursensor (Temperatur-Strom)
  • Mathematisch (Digitale Simulation): Regler aller Art z. B. PID-Regler

Beispiel aus der Mechanik

Der freie Fall ohne Reibung wird beschrieben durch die Differentialgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m\ddot z = mg}

mit dem Weg Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} , der Beschleunigung an der Erdoberfläche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} und der Masse des fallenden Gegenstandes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} . Übertragen in die Zustandsraumdarstellung und unter herauskürzen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} erhält man die Zustandsdifferentialgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{bmatrix} \ddot z \\ \dot z \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix}\dot z \\ z \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} g \end{bmatrix} }

wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} als (in der Regel konstanter) äußerer Einfluss betrachtet wird, und damit ein (das einzige) Glied des Eingangsvektors bildet. Interessiert man sich naheliegender Weise für die momentane Position Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} und Geschwindigkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v} , lautet die Ausgangsgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{bmatrix} v \\ p \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix}\dot z \\ z \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} g \end{bmatrix} }

mit einer 1-Matrix als Ausgangsmatrix und einer Nullmatrix als Durchgriffsmatrix, da die Ausgänge identisch mit den Zuständen sind. In dieser Betrachtung handelt es sich um ein LZI System, da alle Matrizen des linearen Differentialgleichungssystems konstant, also zeitinvariant, sind.

Berücksichtigt man aber, dass die Erdbeschleunigung g abhängig ist vom Abstand der Massenschwerpunkte

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g = G\,\frac{m_\mathrm{E}}{(r_\mathrm{E} + z)^2} = G\,\frac{m_\mathrm{E}}{r_\mathrm{E}^2 + 2 r_\mathrm{E} z + z^2}}

mit der Erdmasse Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m_\mathrm{E}} und dem Erdradius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r_\mathrm{E}} , so ist das System nichtlinear abhängig vom Zustand z, also kein LZI System.

Wird die Erdbeschleunigung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} aufgrund einer meist sehr viel kleineren Höhe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z} gegenüber dem Erdradius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle z \ll r_\mathrm{E}} weiterhin als konstant betrachtet

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g \approx G\,\frac{m_\mathrm{E}}{r_\mathrm{E}^2}}

aber die Reibung zwischen betrachteter Masse und Luft als sehr viel einflussreicher in linearer Abhängigkeit von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \dot z} linear berücksichtigt (siehe auch Fall mit Luftwiderstand#Fall mit Stokes-Reibung), erhält man die Zustandsdifferentialgleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{bmatrix} \ddot z \\ \dot z \end{bmatrix} = \begin{bmatrix} -\beta & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix}\dot z \\ z \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} g \end{bmatrix} }

mit dem Reibkoeffizienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta} . Wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta} als Formkonstante des fallenden Gegenstandes betrachtet, handelt es sich nach wie vor um ein LZI System.

Literatur

  • Heinz Unbehauen: Regelungstechnik 1, Vieweg, Braunschweig/Wiesbaden, ISBN 3-528-93332-1
  • Alan V. Oppenheim, Roland W. Schafer, John R. Buck: Zeitdiskrete Signalverarbeitung, Pearson/München, ISBN 3-8273-7077-9