Satz von Lester
aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 11. Mai 2020 um 20:46 Uhr durch imported>1234qwer1234qwer4(1824074) (→Weblinks: Kategorisation mit AWB).
Der Satz von Lester, benannt nach June Lester, ist eine Aussage der ebenen euklidischen Geometrie, wonach in einem beliebigen, nicht gleichschenkligen Dreieck die beiden Fermat-Punkte, der Mittelpunkt des Feuerbach-Kreises und der Umkreismittelpunkt konzyklisch sind, also auf einem Kreis liegen.
Der Mittelpunkt des genannten Kreises hat die Kimberling-Nummer X(1116) und die baryzentrischen Koordinaten:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (c^2-a^2)(2(b^2-c^2)(a^2-b^2) + 3R^2(2b^2-a^2-c^2) - b^2(a^2+b^2+c^2) + a^4+b^4+c^4) \,}
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle (a^{2}-b^{2})(2(c^{2}-a^{2})(b^{2}-c^{2})+3R^{2}(2c^{2}-b^{2}-a^{2})-c^{2}(a^{2}+b^{2}+c^{2})+a^{4}+b^{4}+c^{4})\,}
Literatur
- Clark Kimberling, "Lester Circle", Mathematics Teacher, volume 89, number 26, 1996.
- June A. Lester, "Triangles III: Complex triangle functions", Aequationes Mathematicae, volume 53, pages 4–35, 1997.
- Michael Trott, "Applying GroebnerBasis to Three Problems in Geometry", Mathematica in Education and Research, volume 6, pages 15–28, 1997.
- Ron Shail, "A proof of Lester's Theorem", Mathematical Gazette, volume 85, pages 225–232, 2001.
- John Rigby, "A simple proof of Lester's theorem", Mathematical Gazette, volume 87, pages 444–452, 2003.
- J.A. Scott, "On the Lester circle and the Archimedean triangle", Mathematical Gazette, volume 89, pages 498–500, 2005.
- Michael Duff, "A short projective proof of Lester's theorem", Mathematical Gazette, volume 89, pages 505–506, 2005.
- Stan Dolan, "Man versus Computer", Mathematical Gazette, volume 91, pages 469–480, 2007.
Weblinks
- The Lester Circle Einzelheiten zur Entdeckung
- Lester Circle bei MathWorld