Vollständiger Körper

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 21. Mai 2020 um 10:18 Uhr durch imported>Stapelüberlauf(3483328) (Tippfehler: bewertertete → bewertete).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Im mathematischen Teilgebiet der Algebra ist ein vollständiger Körper (auch vollständiger bewerteter Körper) ein bewerteter Körper, der mit der aus der Bewertung resultierenden Metrik ein vollständiger Raum ist.[1]

Standardbeispiel für einen vollständigen Körper ist , für einen unvollständigen Körper . In diesen beiden Körpern liefert der Absolutbetrag die Bewertung.

Für geordnete Körper hat man damit neben der Ordnungsvollständigkeit einen zweiten Vollständigkeitsbegriff (metrische Vollständigkeit oder Cauchy-Vollständigkeit), doch für archimedische Körper (wie oder ) sind die beiden äquivalent: Ein geordneter Körper ist genau dann archimedisch und Cauchy-vollständig, wenn er ordnungsvollständig ist. Es gibt jedoch nicht-angeordnete Körper (wie oder ), die metrisch vollständig sind.

Erläuterungen

Ein bewerteter Körper ist ein Körper mit einer Bewertung, d. h. einer Abbildung in die reellen Zahlen

,

die die Bedingungen

für , und
für alle
für alle

erfüllt.

Die Bewertung induziert eine Metrik auf durch

.

Ein bewerteter Körper heißt vollständig, wenn in mit der induzierten Metrik jede Cauchy-Folge konvergiert.

Verallgemeinerungen

Die Bezeichnung „vollständiger Körper“ legt nahe, nicht nur bewertete Körper zu betrachten, sondern allgemeiner, mit einer Metrik versehene Körper. Das nLab definiert einen vollständigen Körper als einen vollständigen Raum und fordert zusätzlich die Stetigkeit der Körperoperationen, also dass die Abbildungen

bzgl. der von der Metrik erzeugten Topologie stetig sind.[2] Aus den oben genannten Eigenschaften einer Bewertung folgt diese Stetigkeit automatisch.

Beispiele

  • Der Körper der reellen Zahlen mit der Metrik .
  • Der Körper der komplexen Zahlen mit der Metrik .
  • Der Körper der p-adischen Zahlen mit der durch die p-adische Norm definierten Metrik .
  • Der Schiefkörper der Quaternionen mit der Metrik .

Vervollständigung bewerteter Körper

Definition

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} ein bewerteter Körper und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d} die von der Bewertung induzierte Metrik. Die Vervollständigung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} bzgl. dieser Metrik ist ein vollständiger Körper, der mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \overline{K}} bezeichnet wird.

Beispiele

  • Ausgehend vom Körper der rationalen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Q} mit der p-adischen Bewertung erhält man als Vervollständigung den Körper der p-adischen Zahlen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Q_p} .
  • Ausgehend vom Körper der rationalen Zahlen mit dem Absolutbetrag erhält man als Vervollständigung den Körper der reellen Zahlen.
  • Ausgehend vom rationalen Funktionenkörper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Q(x)} und der durch die Nullstellenordnung im Nullpunkt gegebenen Bewertung erhält man als Vervollständigung den Körper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Q((x))} der formalen Laurent-Reihen.

Einzelnachweise

  1. Lexikon der Mathematik. Band 5. Spektrum Akademischer Verlag, Heidelberg 2002, ISBN 3-8274-0437-1, vollständiger Körper, S. 352 (spektrum.de [abgerufen am 26. März 2019]).
  2. Toby Bartels, et al.: complete space. In: nLab. 12. Juli 2018, abgerufen am 26. März 2019.

Weblinks