Benutzer:Mathemix/Artikelentwurf/Physik

aus Wikipedia, der freien Enzyklopädie
< Benutzer:Mathemix‎ | Artikelentwurf
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 25. Mai 2020 um 12:32 Uhr durch imported>Mathemix(3087684) (→‎Schlagzeug2: Vorbereitung).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Schlagzeug

Die Version von LilyPond konnte nicht ermittelt werden:

sh: /usr/bin/lilypond: No such file or directory

Schlagzeug2

LilyPond konnte nicht ausgeführt werden: /usr/bin/lilypond ist eine nicht ausführbare Datei. Es muss sichergestellt sein, dass $wgScoreLilyPond in der Konfigurationsdatei richtig eingestellt wurde.

Knotentheorie

  • Colin C. Adams: Das Knotenbuch (Einführung in die mathematische Theorie der Knoten) Spektrum, Heidelberg/Berlin/Oxford 1995, ISBN 3-86025-338-7




Energieerhaltung

Beispiel: Rechnung zur Energieerhaltung beim Pendel

Die Höhen am Umkehrpunkt und werden senkrecht zu der Tangente an die Bahnkurve im tiefsten Punkt gemessen. Dort hat das Pendel mit der Masse m die potentielle Energie V = 0. An den Umkehrpunkten ist die potentielle Energie . Für diese Energie sowie die kinetische Energie T und die potentielle Energie V gilt somit die Gleichung

.

Damit ergibt sich

.

Am tiefsten Punkt ist , die zugehörige Geschwindigkeit ist maximal:

Bemerkungen:

  • Diese Geschwindigkeit ist unabhängig von der Masse m des Pendels
  • Derselbe Ansatz für die Energieerhaltung gilt auch für den freien Fall. Die Geschwindigkeit ist dann die Auftreffgeschwindigkeit nach einem Fall aus der Höhe .

Freier Fall

Auf den freien Fall kann der Energieerhaltungssatz angewendet werden: die potentielle Energie im höchsten Punkt wird umgewandelt in kinetische Energie im tiefsten Punkt. Der formelmäßige Ansatz

.

liefert dieselbe Formel für die oben angegebene Endgeschwindigkeit.

2. Version:

Energieerhaltung

Kann, beispielsweise bei einem Pendel, die Reibung vernachlässigt werden, so ändert sich die Summe von potentieller und kinetischer Energie nicht mit der Zeit. Lenkt man das Pendel aus, so schwingt es zwischen zwei Umkehrpunkten und erreicht seine höchste Geschwindigkeit am Ort des Potentialminimums. An den Umkehrpunkten ist die kinetische Energie null und die potentielle Energie maximal. Unabhängig von der Position des Pendels hat die Summe aus kinetischer und potentieller Energie den durch die anfängliche Auslenkung vorgegebenen Wert.

E = T + V

Beispiel: Rechnung zur Energieerhaltung beim Pendel

Die Höhen am Umkehrpunkt und werden senkrecht zu der Tangente an die Bahnkurve im tiefsten Punkt gemessen. Dort hat das Pendel mit der Masse m die potentielle Energie V = 0. An den Umkehrpunkten ist die potentielle Energie . Für diese Energie sowie die kinetische Energie T und die potentielle Energie V gilt somit die Gleichung

.

Damit ergibt sich

.

Am tiefsten Punkt ist , die zugehörige Geschwindigkeit ist maximal:

Bemerkungen:

  • Diese Geschwindigkeit ist unabhängig von der Masse m des Pendels
  • Derselbe Ansatz für die Energieerhaltung gilt auch für den freien Fall. Die Geschwindigkeit ist dann die Auftreffgeschwindigkeit nach einem Fall aus der Höhe .

Freier Fall

t und v sind unabhängig von der Masse m. Der freie Fall kann auch als Energieerhaltung bzw. Energieumwandlung aufgefasst werden: die potentielle Energie im höchsten Punkt wird umgewandelt in kinetische Energie im tiefsten Punkt. Der formelmäßige Ansatz

.

liefert dieselbe Formel für die Auftreffgeschwindigkeit.