Satz von Darmois-Skitowitsch
aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 4. Juli 2020 um 14:50 Uhr durch imported>FerdiBf(497820) (Sortierung in Kat).
Der Satz von Darmois-Skitovich ist ein Satz aus der Stochastik, der die Normalverteilung über unabhängige Linearformen von Zufallsvariablen charakterisiert. Der Satz ist in der mathematischen Statistik von Bedeutung, da dort in der Regel die Verteilung nicht bekannt ist.
Er ist benannt nach dem französischen Mathematikern Georges Darmois und dem russischen Mathematiker Viktor Pawlowitsch Skitowitsch.[1]
Formulierung des Satzes
Seien unabhängige Zufallsvariablen und . Sind nun und unabhängig, dann sind alle normalverteilt.
Erläuterung des Satzes
Der Satz zeigt, dass die Unabhängigkeit der Linearformen der Zufallsvariablen zur Charakterisierung der Normalverteilung genügt und verzichtet auf die Bedingung der identischen Verteilung.
Einzelnachweise
- ↑ Mathematische Statistik, S. 97, von Ludger Rüschendorf, 1970. Google books Ausschnitt