Lokalendliche Gruppe

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 26. Juli 2020 um 06:56 Uhr durch imported>Wolny1(2936578).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Lokalendliche Gruppen werden im mathematischen Teilgebiet der Gruppentheorie untersucht. Es handelt sich um eine Verallgemeinerung der endlichen Gruppen dahingehend, dass nur noch die Endlichkeit jeder endlich erzeugten Untergruppe gefordert wird, die Gruppe selbst kann unendlich sein. (Auch die Getrenntschreibung lokal endlich kommt in der Literatur vor.[1])

Definition

Eine Gruppe heißt lokalendlich, wenn jede von endlich vielen Elementen erzeugte Untergruppe endlich ist.[2]

Eine offenbar äquivalente Formulierung ist: Eine Gruppe heißt lokalendlich, wenn jede endliche Teilmenge in einer endlichen Untergruppe enthalten ist.[3]

Beispiele

  • Endliche Gruppen sind lokalendlich.
  • Die Prüfergruppen sind unendlich, aber lokalendlich.
  • Jede auflösbare Torsionsgruppe ist lokal endlich.
  • Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} eine unendliche Menge. Dann ist die Gruppe aller Permutation auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} , die alle bis auf höchstens endliche viele Punkte aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} fest lassen, lokalendlich.[4] Damit kann man lokalendliche Gruppen beliebiger Mächtigkeit konstruieren.
  • Nach einem Satz von Issai Schur ist jede Torsionsuntergruppe der allgemeinen linearen Gruppe über einem endlichdimensionalen Vektorraum eine lokalendliche Gruppe.[5]

Gegenbeispiele

  • Da lokalendliche Gruppen Torsionsgruppen sind, denn jedes Element liegt definitionsgemäß in einer endlichen Gruppe, ist jede Nicht-Torsionsgruppe ein Gegenbeispiel. Also sind alle Gruppen mit einem Element unendlicher Ordnung nicht lokalendlich, insbesondere ist die additive Gruppe der ganzen Zahlen nicht lokalendlich.
  • Tarski-Gruppen sind Torsionsgruppen, die nicht lokalendlich sind.

Vererbungseigenschaften

  • Untergruppen von lokalendlichen Gruppen sind wieder lokalendlich.
  • Quotientengruppen von lokalendlichen Gruppen sind wieder lokalendlich.
  • Gruppenerweiterungen lokalendlicher Gruppen sind wieder lokalendlich, d. h., ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N\subset G} ein Normalteiler und sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G/N} lokalendlich, so auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} .[6]
  • Das eingeschränkte direkte Produkt von endlichen Gruppen ist lokalendlich. Ist also eine Familie von endlichen Gruppen, so ist auch
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat{\prod_{i\in I}}G_i := \{(x_i)_{i\in I} \mid x_i \in G_i \text{ für alle }i\in I, x_i=1_i \text{ für fast alle }i\in I\} \subset \prod_{i\in I}G_i}
lokalendlich, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1_i} das neutrale Element in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G_i} sei.[7]

Sylow-Gruppen

Wie in der Theorie der endlichen Gruppen sind p-Sylowgruppen maximale p-Untergruppen einer Gruppe, wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} eine Primzahl sei. Eine Standardanwendung des zornschen Lemmas zeigt, dass jede, auch unendliche Gruppe -Sylowgruppen hat. Es stellt sich die Frage, ob je zwei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} -Sylowgruppen wie im endlichen Fall auch konjugiert sind. Das ist im Allgemeinen nicht der Fall, selbst für abzählbare lokalendliche Gruppen nicht.

Als Beispiel betrachte das eingeschränkte, abzählbare Produkt der symmetrischen Gruppe S3

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G = \hat{\prod_{i\in \N}}S_3} .

Für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\in \N} sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i\in S_3} ein Element der Ordnung 2. Dann kann man zeigen, dass jede Untergruppe

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U := \hat{\prod_{i\in I}}\langle x_i \rangle \subset G}

eine 2-Sylowgruppe ist, wobei Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \langle x_{i}\rangle } die von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i\in S_3} erzeugte zweielementige Untergruppe sei. Für jedes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i\in \N} hat man drei mögliche Wahlen der , so dass es überabzählbar viele 2-Sylowgruppen gibt. Die können nicht alle konjugiert sein, denn eine Konjugation wird durch ein Gruppenelement vermittelt und davon gibt es nur abzählbar viele.[8] Die Konjugiertheit aller 2-Sylowgruppen scheitert also aus Mächtigkeitsgründen. Das ist aber auch der einzig mögliche Grund, denn es gilt folgender Satz:[9]

  • Es seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle G} eine abzählbare, lokalendliche Gruppe und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} eine Primzahl. Es sind genau dann alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle p} -Sylowgruppen untereinander konjugiert, wenn es höchstens abzählbar viele von ihnen gibt.

Abelsche Untergruppen

In der Gruppentheorie gab es die alte Frage, deren genaue Herkunft unklar zu sein scheint, ob eine unendliche Gruppe stets eine unendliche abelsche Gruppe enthält. Es hat sich herausgestellt, dass das im Allgemeinen nicht der Fall ist. Die Tarski-Gruppen sind extreme Gegenbeispiele, denn sie sind selbst nicht abelsch und jede echte, nicht-triviale Untergruppe ist endlich von Primzahlordnung. Eine positive Antwort haben P. Hall, C. R. Kulatilaka und M. I. Kargapolow für lokalendliche Gruppen erzielt:[10][11][12]

  • Jede unendliche, lokalendliche Gruppe enthält eine unendliche abelsche Gruppe.

Der Beweis verwendet den Satz von Feit-Thompson. Es sind keine Beweise bekannt, die ohne dieses Hilfsmittel auskommen.

Einzelnachweise

  1. Sergei Nikolajewitsch Tschernikow: Endlichkeitsbedingungen in der Gruppentheorie, Deutscher Verlag der Wissenschaften (1963)
  2. Wilhelm Specht: Gruppentheorie, Springer-Verlag 1956, Grundlehren der mathematischen Wissenschaften, ISBN 978-3-642-94668-4, Kapitel 1.4.5 Lokale Gruppeneigenschaften, Definition 10
  3. B. Hartley, G. M. Seitz, A. V. Borovik, R. M. Bryant: Finite and Locally Finite Groups, Springer-Verlag 1995, ISBN 978-94-010-4145-4, Introduction
  4. O. H. Kegel, B. A. F. Wehrfritz: Locally Finite Groups, North Holland Publishing Company (1973), ISBN 0-7204-2454-2, Beispiel ii auf Seite 9
  5. Martyn R. Dixon: Sylow theory, formation and fitting classes in locally finite groups, World Scientific Publishing (1994), ISBN 9-8102-1795-1, Theorem 1.4.16
  6. D. J. S. Robinson: A Course in the Theory of Groups, Springer-Verlag 1996, ISBN 0-387-94461-3, Satz 14.3.1
  7. Martyn R. Dixon: Sylow theory, formation and fitting classes in locally finite groups, World Scientific Publishing (1994), ISBN 9-8102-1795-1, Beispiel 1.4.4
  8. D. J. S. Robinson: A Course in the Theory of Groups, Springer-Verlag 1996, ISBN 0-387-94461-3, Beispiel in Kap. 14.3
  9. D. J. S. Robinson: A Course in the Theory of Groups, Springer-Verlag 1996, ISBN 0-387-94461-3, Satz 14.3.6
  10. P. Hall, C. R. Kulatilaka: A property of locally finite groups, J. London Math. Soc. (1964), Band 39, Seiten 235–239
  11. D. J. S. Robinson: A Course in the Theory of Groups, Springer-Verlag 1996, ISBN 0-387-94461-3, Satz 14.3.7
  12. M. Kargapolov: On a problem of O. Ju. Schmidt, Sib. Mat. Zh. (1963), Band 4, Seiten 232–235