1,3-Diiod-5,5-dimethylhydantoin

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 28. Mai 2021 um 03:01 Uhr durch imported>WikispiderBot(3723631) (⚙️ Bot: Quelltextbereinigung, prüfe und aktualisiere Vorlagen-Einbindungen).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Strukturformel
Strukturformel von 1,3-Diiod-5,5-dimethylhydantoin
Allgemeines
Name 1,3-Diiod-5,5-dimethylhydantoin
Andere Namen
  • 1,3-Diiod-5,5-dimethylimidazolidin-2,4-dion
  • Diioddimethylhydantoin
  • DIH
Summenformel C5H6I2N2O2
Kurzbeschreibung

schwach gelbes bis hellbraunes Pulver[1][2]

Externe Identifikatoren/Datenbanken
CAS-Nummer 2232-12-4
EG-Nummer 606-981-7
ECHA-InfoCard 100.119.765
PubChem 200534
ChemSpider 173592
Eigenschaften
Molare Masse 379,92 g·mol−1
Aggregatzustand

fest

Schmelzpunkt

192–196 °C[1][2]

Löslichkeit

löslich in Aceton, gering löslich in Dichlormethan[1]

Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung [3]
Gefahrensymbol Gefahrensymbol Gefahrensymbol

Gefahr

H- und P-Sätze H: 272​‐​314​‐​400
P: 220​‐​273​‐​280​‐​305+351+338​‐​310 [3]
Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen.

1,3-Diiod-5,5-dimethylhydantoin (kurz DIH) ist eine heterocyclische organische Verbindung, die in der organischen Synthese als Iodierungsreagenz sowie als Oxidationsmittel eingesetzt wird.

Gewinnung und Darstellung

Die Herstellung von 1,3-Diiod-5,5-dimethylhydantoin erfolgte erstmals 1965 durch die Umsetzung von Iodmonochlorid mit 5,5-Dimethylhydantoin in Gegenwart von Natronlauge.[4] Das Edukt 5,5-Dimethylhydantoin kann sehr einfach aus Kaliumcyanat, Ammoniumcarbonat und Aceton kommerziell synthetisiert werden.[1] Eine neuere Synthese nutzt die Kombination aus Iod und Kaliumiodid als Iodquelle und Natriumhypochlorit als Oxidationsmittel.[5][2]

Synthese

Eigenschaften

1,3-Diiod-5,5-dimethylhydantoin bildet ein schwach gelbes bis hellbraunes Pulver, das bei 192–196 °C unter Zersetzung schmilzt. Es ist bei −20 °C lagerstabil. Die Verbindung löst sich gut in Aceton, wobei bei Temperaturen oberhalb von 50 °C eine Reaktion unter Bildung von Iodaceton stattfindet. Zudem ist der Stoff licht- und feuchtigkeitsempfindlich.[1]

Verwendung

1,3-Diiod-5,5-dimethylhydrandoin wird in der organischen Synthese als Iodierungsreagenz und Oxidationsmittel eingesetzt. In einer electrophilen Iodierung können elektronenreiche Aromaten und Heteroaromaten umgesetzt werden.[6] Hierbei werden beide Iodatome genutzt. Im Vergleich zur Verwendung von elementarem Iod entsteht kein Iodwasserstoff. Anilin wird zum 4-Iodanilin, Phenol zum 2,4,6-Triiodphenol umgesetzt.[1] Primäre Alkohole können in Gegenwart von Ammoniak zu den entsprechenden Nitrilen oxidiert werden. Aus substituierten Benzylalkoholen resultieren die entsprechenden Benzonitrile. In ähnlicher Weise können auch primäre, sekundäre und ternäre Amine, sowie Halogenide und Aldehyde zu Nitrilen umgesetzt werden.[1][7][8][9]

Substituierte Benzaldehyde können mit sekundären Aminen in Gegenwart von 1,3-Diiod-5,5-dimethylhydrandoin in einer oxydativen Aminierung zu den entsprechenden Benzamiden umgesetzt werden.[10][2]

1,3-Diiodo-5,5-dimethylhydantoin reaction01.svg

In ähnlicher Weise sind durch die Reaktion von Benzaldehyden mit Ethanolamin in Gegenwart von 1,3-Diiod-5,5-dimethylhydrandoin in 2-Stellung substituierte Oxazoline zugänglich.[11][1][2]

1,3-Diiodo-5,5-dimethylhydantoin reaction02.svg

Es können analog weitere substituierte Heterocyclen synthetisiert werden.[1] Die Umsetzung mit 1,3-Propandiamin ergibt in 2-Stellung substituierte 1,4,6,6-Tetrahydropyrimidine, die zu den entsprechenden Pyrimidinen weiteroxidiert werden können.[12] 3-Phenyl-1-propanol kann zum Chroman zyklisiert werden.[13]

Einzelnachweise

  1. a b c d e f g h i 1,3-Diiodo-5,5-dimethylhydantoin. In: e-EROS Encyclopedia of Reagents for Organic Synthesis. John Wiley and Sons, 1999–2013, abgerufen am 19. Dezember 2017.
  2. a b c d e C. Ricco: 1,3-Diiodo-5,5-dimethylhydantoin. In: Synlett. 24, 2013, S. 2173–2174, doi:10.1055/s-0033-1339477.
  3. a b Datenblatt 1,3-Diiodo-5,5-dimethylhydantoin bei Sigma-Aldrich, abgerufen am 19. Dezember 2017 (PDF).
  4. O. O. Orazi, R. A. Corral, H. E. Bertorello: N-Iodohydantoins. II. Iodinations with 1,3-Diiodo-5,5-dimethylhydantoin. In: J. Org. Chem. 30, 1965, S. 1101–1104, doi:10.1021/jo01015a036.
  5. K Mima. Japanese Patent 2013/23475, 2013.
  6. V. K. Chaikovskii, V. D. Filimonov, A. A. Funk, V. I. Skorokhodov, V. D. Ogorodnikov: 1,3-Diiodo-5,5-dimethylhydantoin—An efficient reagent for iodination of aromatic compound. In: Russian J. Org. Chem. 43, 2007, S. 1291–1296, doi:10.1134/S1070428007090060
  7. S. Iida, H. Togo: Oxidative Conversion of Primary Alcohols, and Primary, Secondary, and Tertiary Amines into the Corresponding Nitriles with 1,3-Diiodo-5,5-dimethylhydantoin in Aqueous NH3. In: Synlett. 2007, S. 407–410, doi:10.1055/s-2007-967954.
  8. S. Iida, H. Togo: Direct oxidative conversion of alcohols and amines to nitriles with molecular iodine and DIH in aq NH3. In: Tetrahedron. 63, 2007, S. 8274–8281, doi:10.1016/j.tet.2007.05.106.
  9. S. Iida, R. Ohmura, H. Togo: Direct oxidative conversion of alkyl halides into nitriles with molecular iodine and 1,3-diiodo-5,5-dimethylhydantoin in aq ammonia. In: Tetrahedron. 65, 2009, S. 6257–6262, doi:10.1016/j.tet.2009.05.001.
  10. H. Baba, K. Moriyama, H. Togo: Preparation of N,N-Dimethyl Aromatic Amides from Aromatic Aldehydes with Dimethylamine and Iodine Reagents. In: Synlett. 23, 2012, S. 1175–1180, doi:10.1055/s-0031-1290659.
  11. S. Takahashi, H. Togo: An Efficient Oxidative Conversion of Aldehydes into 2-Substituted 2-Oxazolines Using 1,3-Diiodo-5,5-dimethylhydantoin. In: Synthesis. 2009, S. 2329–2332, doi:10.1055/s-0029-1216843.
  12. S. Takahashi, H. Togo: Direct Oxidative Conversion of Aldehydes into 2-Substituted 1,4,5,6-Tetrahydropyrimidines Using Molecular Iodine or 1,3-Diiodo-5,5-dimethylhydantoin. In: Heterocycles. 82, 2010, S. 593–601, doi:10.3987/COM-10-S(E)29.
  13. S. Furuyama, H. Togo: An Efficient Preparation of Chroman Derivatives from 3-Aryl-1-propanols and Related Compounds with 1,3-Diiodo-5,5-dimethylhydantoin under Irradiation Conditions. In: Synlett. 2010, S. 2325–2329, doi:10.1055/s-0030-1258017.