Eulersche Reihe

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 7. Juli 2021 um 10:35 Uhr durch imported>Aka(568) (→‎Weblinks: https, Kleinkram).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Als Eulersche Reihe wird die Identität

bezeichnet.

Die Eulersche Reihe teilte Leonhard Euler in seinem Brief vom 4. Juli 1744 an Christian Goldbach mit, allerdings ohne Beweis. Fast zehn Jahre später veröffentlichte er in seinem Werk Institutiones calculi differentialis einen Beweis. Die Eulersche Reihe ist eine sehr einfach in eine Fourierreihe entwickelbare Funktion. Die Bernoulli-Polynome und die Poissonsche Summenformel lassen sich auf diese für die Analysis fundamentale Reihe zurückführen.

Die Eulersche Reihe bildet den Imaginärteil der Reihe

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum _{n=1}^{\infty} \frac{e^{2\pi inx}}{n},\; x\in \R,\; x\notin \Z }

Hauptsatz

Sei das Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I:=(0,1)} gegeben. Seien des Weiteren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a,b \in I,\ a<b } zwei Punkte aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} . Folgende Funktionenreihe konvergiert gleichmäßig auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bar{I}:=[a,b]} und es gilt:

Literatur

Weblinks