Durchschnittssatz von Krull

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 29. Oktober 2021 um 21:19 Uhr durch imported>Anonym~dewiki(31560) (→‎Formulierung des Satzes).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Der Durchschnittssatz von Krull, benannt nach Wolfgang Krull, ist ein Satz aus der kommutativen Algebra, der sich mit Potenzen von Idealen eines noetherschen Rings beschäftigt. Er hat zur Folge, dass eine gewisse Topologie auf endlich erzeugten Moduln über einem noetherschen Ring hausdorffsch ist.

Formulierung des Satzes

Es sei ein Ideal in einem kommutativen, noetherschen Ring und ein endlich erzeugter -Modul.

  • Für gilt .
  • Ist zusätzlich im Jacobson-Radikal enthalten, so ist .

Der Beweis ist eine einfache Anwendung des Satzes von Artin-Rees. Nach letzterem gibt es ein , so dass für alle gilt:

.

Daraus folgt für

und damit die erste Behauptung. Die zweite folgt dann aus der ersten und dem Lemma von Nakayama.[1]

Anwendung

Ist ein beliebiger -Modul, so definieren die Potenzen

eine Nullumgebungsbasis in und damit eine Topologie, die sogenannte -adische Topologie. In dieser ist eine Menge genau dann offen, wenn es zu jedem ein gibt mit .

Ist ein endlich erzeugter -Modul und ein im Jacobson-Radikal enthaltenes Ideal, so ist mit der -adischen Topologie ein Hausdorffraum. Sind nämlich zwei verschiedene Elemente aus , so ist und daher für hinreichend großes . Dann sind und disjunkte Umgebungen von und .

Einzelnachweise

  1. Siegfried Bosch: Algebraic Geometry and Commutative Algebra. Springer-Verlag, 2012, ISBN 1-4471-4828-2, 2.3. Theorem 2