Abbildungsmatrix
Eine Abbildungs- oder Darstellungsmatrix ist eine Matrix (also eine rechteckige Anordnung von Zahlen), die in der linearen Algebra verwendet wird, um eine lineare Abbildung zwischen zwei endlichdimensionalen Vektorräumen zu beschreiben.
Die aus diesen abgeleiteten affinen Abbildungen, Affinitäten und Projektivitäten können ebenfalls durch Abbildungsmatrizen dargestellt werden.
Begriff
Voraussetzungen
Um eine lineare Abbildung von Vektorräumen durch eine Matrix beschreiben zu können, muss zunächst sowohl im Urbildraum als auch im Zielraum eine Basis (mit Reihenfolge der Basisvektoren) fest gewählt worden sein. Bei einem Wechsel der Basen in einem der betroffenen Räume muss die Matrix transformiert werden, sonst beschreibt sie eine andere lineare Abbildung.
Wenn in der Definitionsmenge und der Zielmenge eine Basis gewählt worden ist, dann lässt sich eine lineare Abbildung eindeutig durch eine Abbildungsmatrix beschreiben. Allerdings muss dafür festgelegt werden, ob man die Koordinaten von Vektoren in Spalten- oder Zeilenschreibweise notiert. Die üblichere Schreibweise ist die in Spalten.
Dazu muss man den Vektor, der abgebildet werden soll, als Spaltenvektor (bzgl. der gewählten Basis) schreiben.
Aufbau bei Verwendung von Spaltenvektoren
Nach der Wahl einer Basis aus der Definitionsmenge und der Zielmenge stehen in den Spalten der Abbildungsmatrix die Koordinaten der Bilder der Basisvektoren des abgebildeten Vektorraums bezüglich der Basis des Zielraums: Jede Spalte der Matrix ist das Bild eines Vektors der Urbildbasis. Eine Abbildungsmatrix, die eine Abbildung aus einem 4-dimensionalen Vektorraum in einen 6-dimensionalen Vektorraum beschreibt, muss daher stets 6 Zeilen (für die sechs Bildkoordinaten der Basisvektoren) und 4 Spalten (für jeden Basisvektor des Urbildraums eine) haben.
Allgemeiner: Eine lineare Abbildungsmatrix aus einem n-dimensionalen Vektorraum mit Basis in einen m-dimensionalen Vektorraum mit Basis hat m Zeilen und n Spalten. Das Bild eines Koordinatenvektors unter der linearen Abbildung kann man dann so berechnen:
Dabei ist der Bildvektor, der Vektor, der abgebildet wird, jeweils in den zur gewählten Basis ihres Raumes gehörenden Koordinaten.
Siehe hierzu auch: Aufbau der Abbildungsmatrix.
Verwendung von Zeilenvektoren
Verwendet man anstelle von Spaltenvektoren Zeilenvektoren, dann muss die Abbildungsmatrix transponiert werden. Das bedeutet, dass nun die Koordinaten des Bildes des 1. Basisvektors im Urbildraum in der ersten Zeile stehen usw. Bei der Berechnung der Bildkoordinaten muss der (Zeilenkoordinaten-)Vektor nun von links an die Abbildungsmatrix multipliziert werden.
Berechnung
Abbildungen auf Koordinatentupel
Sei eine lineare Abbildung und
eine geordnete Basis von .
Als Basis für die Zielmenge wird die Standardbasis gewählt:
Die Abbildungsmatrix ergibt sich, indem man die Bilder der Basisvektoren von als Spalten einer Matrix auffasst
Beispiel: Man betrachte die lineare Abbildung
Sowohl im Urbildraum als auch im Zielraum wird die Standardbasis gewählt:
Es gilt:
Damit ist die Abbildungsmatrix von bezüglich der gewählten Basen und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_B^A (f)=\begin{pmatrix} 2 & -3 & 0\\ 1 & -2 & 1\end{pmatrix}. }
Abbildungen in allgemeine Vektorräume
Falls die Elemente des Zielraums keine Koordinatentupel sind, oder aus anderen Gründen eine andere Basis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B=(\vec w_1, \vec w_2, \dotsc, \vec w_m)} anstelle der Standardbasis gewählt wird, so müssen die Bilder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\vec v_j)} als Linearkombinationen der Basisvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec w_i} dargestellt werden, um die Einträge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a_{ij}} der Abbildungsmatrix zu ermitteln:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\vec v_j) = a_{1j} \vec w_1 + a_{2j} \vec w_2 + \dotsb + a_{mj} \vec w_m = \sum_{i = 1}^m a_{ij} \vec w_i}
Die Abbildungsmatrix ergibt sich dann, indem man die Koeffizienten der Linearkombinationen spaltenweise in die Matrix einträgt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_B^A(f)=\begin{pmatrix} a_{11} & \dots &a_{1j} & \dots & a_{1n}\\ a_{21} & \dots &a_{2j} & \dots & a_{2n}\\ \vdots & &\vdots & & \vdots\\ a_{m1} & \dots & a_{mj} & \dots & a_{mn}\end{pmatrix} }
Beispiel: Es werde wieder die lineare Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} des obigen Beispiels betrachtet. Diesmal wird im Zielraum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \R^2} jedoch die geordnete Basis
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B=\left(\begin{pmatrix} 2\\ 1\end{pmatrix}, \begin{pmatrix} 1\\ 1\end{pmatrix}\right) }
verwendet. Nun gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\begin{pmatrix} 1\\ 0\\ 0\end{pmatrix} = \begin{pmatrix} 2\\ 1\end{pmatrix}=1\,\begin{pmatrix} 2\\ 1\end{pmatrix}+0\,\begin{pmatrix} 1\\ 1\end{pmatrix}, }
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\begin{pmatrix} 0\\ 1\\ 0\end{pmatrix} = \begin{pmatrix} -3\\ -2\end{pmatrix}=-1\,\begin{pmatrix} 2\\ 1\end{pmatrix}-1\,\begin{pmatrix} 1\\ 1\end{pmatrix}, }
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\begin{pmatrix} 0\\ 0\\ 1\end{pmatrix} = \begin{pmatrix} 0\\ 1\end{pmatrix}=-1\,\begin{pmatrix} 2\\ 1\end{pmatrix}+2\,\begin{pmatrix} 1\\ 1\end{pmatrix} }
Damit erhält man für Abbildungsmatrix von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} bezüglich der Basen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_B^A(f)=\begin{pmatrix} 1 & -1 & -1\\ 0 & -1 & 2\end{pmatrix} }
Koordinatendarstellung von linearen Abbildungen
Mit Hilfe der Abbildungsmatrix kann man den Bildvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\vec v)} eines Vektors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec v \in V} unter der linearen Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon V \to W} berechnen.
Hat der Vektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec v \in V} bezüglich der Basis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = (\vec v_1, \dotsc, \vec v_n)} den Koordinatenvektor
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec v_A = \vec x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}} ,
das heißt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec v = x_1 \vec v_1 + \dotsb + x_n \vec v_n} ,
und hat der Bildvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\vec v)} bezüglich der Basis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B = (\vec w_1, \dotsc, \vec w_m)} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} die Koordinaten
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\vec v)_B = \vec y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix}} ,
das heißt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\vec v) = y_1 \vec w_1 + \dotsb + y_m \vec w_m} ,
so gilt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y_i = \sum_{j=1}^n a_{ij} \,x_j} ,
bzw. mit Hilfe der Abbildungsmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_B^A(f) = (a_{ij})} ausgedrückt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}} ,
kurz
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec y = M_B^A(f) \cdot \vec x }
bzw.
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\vec v)_B = M_B^A(f) \cdot \vec v_A} .
Hintereinanderausführung von linearen Abbildungen
Der Hintereinanderausführung von linearen Abbildungen entspricht das Matrizenprodukt der zugehörigen Abbildungsmatrizen:
Es seien Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} Vektorräume über dem Körper Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f \colon V \to W} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g \colon W \to U} lineare Abbildungen. In Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} sei die geordnete Basis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A = (\vec v_1, \dots, \vec v_n)} gegeben, in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} die Basis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B = (\vec w_1, \dots, \vec w_m)} und die Basis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C = (\vec u_1, \dots, \vec u_l)} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} . Dann erhält man die Abbildungsmatrix der verketteten linearen Abbildung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g \circ f\colon V \to U,}
indem man die Abbildungsmatrix von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} und die Abbildungsmatrix von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} (jeweils bezüglich der entsprechenden Basen) multipliziert:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_C^A (g \circ f) = M_C^B(g) \cdot M_B^A(f)}
Man beachte, dass in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle W} für beide Abbildungsmatrizen dieselbe Basis gewählt werden muss.
Begründung: Es sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_B^A(f) = (a_{ij})} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_C^B(g) = (b_{ki})} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_C^A (g \circ f) = (c_{kj})} . Die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j} -te Spalte von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_C^A (g \circ f)} enthält die Koordinaten des Bilds Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (g \circ f) (\vec v_j)} des Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j} -ten Basisvektors aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} bezüglich der Basis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{k=1}^l c_{kj} \vec u_k = (g \circ f)(\vec v_j)}
Berechnet man die rechte Seite mit Hilfe der Abbildungsmatrizen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} , so erhält man:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} (g \circ f)(\vec v_j) &= g\big(f(\vec v_j)\big) = g\left(\sum_{i=1}^m a_{ij}\, \vec w_i\right) = \sum_{i=1}^m a_{ij}\, g(\vec w_i) \\ &= \sum_{i=1}^m a_{ij} \,\left(\sum_{k=1}^l b_{ki} \,\vec u_k \right) = \sum_{k=1}^l \left(\sum_{i=1}^m b_{ki} \, a_{ij}\right) \,\vec u_k \end{align}}
Durch Koeffizientenvergleich folgt
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c_{kj} = \sum_{i=1}^m b_{ki} \, a_{ij}}
für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle j} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} , also
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (c_{kj}) = (b_{ki}) \cdot (a_{ij})} ,
das heißt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_C^A (g \circ f) = M_C^B(g) \cdot M_B^A(f)}
Verwendung
Basiswechsel
Ist die Abbildungsmatrix einer Abbildung für bestimmte Basen bekannt, so lässt sich die Abbildungsmatrix für dieselbe Abbildung, jedoch mit anderen Basen, leicht berechnen. Dieser Vorgang wird als Basiswechsel bezeichnet. Es kann etwa sein, dass die vorliegenden Basen schlecht geeignet sind, um ein bestimmtes Problem mit der Matrix zu lösen. Nach einem Basiswechsel liegt die Matrix dann in einer einfacheren Form vor, repräsentiert aber immer noch dieselbe lineare Abbildung[1]. Die Abbildungsmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{B'}^{A'}(f)} berechnet sich aus der Abbildungsmatrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_B^A(f)} und den Basiswechselmatrizen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_A^{A'}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T_{B'}^B} wie folgt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_{B'}^{A'}(f)=T_{B'}^B\cdot M_B^A(f)\cdot T_A^{A'} }
Beschreibung von Endomorphismen
Bei einer linearen Selbstabbildung (einem Endomorphismus) eines Vektorraums legt man gewöhnlich eine feste Basis des Vektorraumes als Definitionsmenge und Zielmenge zugrunde. Dann beschreibt die Abbildungsmatrix die Veränderung, die die Koordinaten eines beliebigen Vektors bezüglich dieser Basis bei der Abbildung erfahren. Die Abbildungsmatrix ist bei Endomorphismen stets quadratisch, d. h. die Zahl der Zeilen stimmt mit der Zahl der Spalten überein.
Beschreibung von affinen Abbildungen und Affinitäten
Nach der Wahl einer affinen Punktbasis in beiden affinen Räumen, die durch eine affine Abbildung aufeinander abgebildet werden, kann diese Abbildung durch eine Abbildungsmatrix und eine zusätzliche Verschiebung oder – in homogenen Koordinaten durch eine erweiterte (auch: "homogene") Abbildungsmatrix allein beschrieben werden.
Beispiele
Orthogonalprojektion
Im dreidimensionalen Raum (mit der kanonischen Basis) kann man die Orthogonalprojektion eines Vektors auf eine Ursprungsgerade durch folgende Abbildungsmatrix beschreiben:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{P_n} = \begin{pmatrix} n_1^2 & n_1 n_2 & n_1 n_3 \\ n_1 n_2 & n_2^2 & n_2 n_3 \\ n_1 n_3 & n_2 n_3 & n_3^2 \end{pmatrix}}
Dabei sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec n = ( n_1 , n_2 , n_3 )^T} die Koordinaten des normierten Richtungsvektors der Geraden. Wird anstatt auf eine Gerade auf eine Ebene mit den beiden zueinander senkrechten, normierten Richtungsvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec p} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec q } projiziert, so kann man dies in zwei Projektionen entlang der beiden Richtungsvektoren auffassen, und demnach die Projektionsmatrix für die Orthogonalprojektion auf eine Ursprungsebene folgendermaßen aufstellen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{P_E} = A_{P_p} + A_{P_q} }
Die Projektionsmatrix um auf eine Ebene zu projizieren, ist also die Summe der Projektionsmatrizen auf ihre Richtungsvektoren.
Spiegelung
Wird anstatt einer Projektion eine Spiegelung durchgeführt, so kann dies ebenfalls mit Hilfe der obigen Projektionsmatrix dargestellt werden. Für die Spiegelungsmatrix an einer Ursprungsgeraden mit normiertem Richtungsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec n } gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{S_n} = 2 A_{P_n} - E } ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} die Einheitsmatrix darstellt. Gleiches gilt für die Spiegelung an der Ebene:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{S_E} = 2 A_{P_E} - E } .
Für die Spiegelung an einer Ebene (die durch den Ursprung geht) mit dem normierten Normalenvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec n } gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{S_E} = E - 2 A_{P_n} } .
Drehung
Wenn man im dreidimensionalen Raum um eine Ursprungsgerade mit normiertem Richtungsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec n } dreht, lässt sich die hierfür nötige Drehmatrix folgendermaßen darstellen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_D = A_{P_n}\ \left( 1-\cos\alpha \right) + E\cos \alpha + \begin{pmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{pmatrix}\sin \alpha } ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} wieder die Einheitsmatrix und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha } den Drehwinkel bezeichnet.
Einzelnachweise
- ↑ Larry Smith: Linear Algebra. Springer 1998, S. 174 eingeschränkte Vorschau in der Google-Buchsuche