Kobordismus

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 23. März 2022 um 20:58 Uhr durch imported>Butäzigä(3694195) (→‎Anwendungen).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

In der Mathematik ist der Begriff des Kobordismus (auch: Bordismus) vor allem in der Topologie und ihren Anwendungen sowie in der topologischen Quantenfeldtheorie von Bedeutung. Er gilt als die bis heute „berechenbarste“ Relation unter Mannigfaltigkeiten, die geometrisch interessant ist.[1]

ist ein Kobordismus zwischen und .

Als Schöpfer der Kobordismentheorie gilt René Thom (1954)[2], wobei einige entscheidende Ideen schon von Lew Pontrjagin (1950 und davor) vorweggenommen wurden.

Definition

Ein Kobordismus zwischen zwei Mannigfaltigkeiten und ist eine Mannigfaltigkeit für deren Rand gilt

.
Der Kreis ist orientiert kobordant zur Vereinigung zweier Kreise.

und werden dann als unorientiert kobordant bezeichnet.

Häufiger wird allerdings der orientierte Kobordismus verwendet. Zwei orientierte Mannigfaltigkeiten und heißen orientiert kobordant, wenn es eine orientierte Mannigfaltigkeit mit

gibt, wobei die Orientierung auf die von der Orientierung von induzierte Orientierung auf dem Rand und die Mannigfaltigkeit mit der entgegengesetzten Orientierung bezeichnet.

Berechenbarkeit

Nach einem Satz von Thom sind zwei Mannigfaltigkeiten genau dann orientiert kobordant, wenn alle ihre Pontrjagin-Zahlen und Stiefel-Whitney-Zahlen übereinstimmen.

Anwendungen

Kobordismus (orientiert oder unorientiert) definiert eine Äquivalenzrelation, die Äquivalenzklassen lassen sich mit der disjunkten Vereinigung als Gruppe auffassen.

René Thoms Berechnung (des torsionsfreien Teils) der (orientierten) Kobordismusgruppe hat zahlreiche Anwendungen in der algebraischen Topologie und darüber hinaus. Aus ihr folgte unmittelbar der Hirzebruchsche Signatursatz und auf ihr baute auch der ursprüngliche Beweis des Atiyah-Singer-Indexsatzes auf.

Innerhalb der Topologie war der Begriff für die Entwicklung der Chirurgietheorie grundlegend. Weiterhin sind die orientierten Kobordismusgruppen ein Beispiel einer verallgemeinerten Kohomologietheorie.

Auch die topologische Quantenfeldtheorie baut auf dem Begriff des Kobordismus auf, siehe Kobordismus-Vermutung.

Begriffsvarianten

Verschiedene Varianten des Kobordismus-Begriffs sind von Bedeutung, insbesondere gerahmter Kobordismus (Pontrjagin-Thom-Konstruktion) und h-Kobordismus.

Literatur

  • John Milnor: A survey of cobordism theory. Enseignement Math. (2) 8 1962 16–23. online (PDF; 9,1 MB)

Weblinks

Einzelnachweise

  1. Steimle, op.cit.
  2. Thom, Quelques propriétés globales des variétés différentiables, Comm.Math.Helvetici, Band 28, 1954, S. 17–86, Digitalisat