Stochastische Geometrie
Die Stochastische Geometrie beschäftigt sich mit der mathematischen Beschreibung und Analyse von zufälligen geometrischen Strukturen, wie Punkten oder Liniensegmenten oder komplizierteren Mengen im Raum oder der Ebene. Wichtige Grundlagen sind zufällige Mengen, insbesondere zufällige abgeschlossene Mengen, Punktprozesse und zufällige Maße.
Eine wichtige Anwendung liegt in der stereologischen Gewinnung von Aussagen über räumliche Strukturen durch die statistische Analyse von linearen und ebenen Schnitten.
Verschiedene Modelle der statistischen Mechanik (insbesondere werden hier Gittermodelle in zwei Dimensionen betrachtet) wie die Perkolationstheorie ergeben ebenfalls zufällige geometrische Strukturen, die mathematisch streng mit der Methode der Schramm-Löwner-Evolution behandelt werden können.
Punktprozesse
Zufällige abgeschlossene Menge
Boolesches Modell
Boolesche Modelle sind einfache Beispiele für zufällige geschlossene Mengen. Es handelt sich dabei um ein Keim-Korn-Modell.
Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi=\{\xi_1,\xi_2,\dots\}} ein homogener Poisson-Punktprozess auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{R}^d} mit Intensität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda} . Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Theta_0} eine zufällige kompakte Menge genannt typisches Korn, die unabhängig von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} ist und es gelte für alle kompakten Mengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{E}(\nu_d\left(\Theta_0\oplus K\right))<\infty}
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A\oplus B:=\{x+y:x\in A,\ y\in B\}} und das -dimensionale Lebesguemaß bezeichnet.
Sei eine Folge von iid zufälligen kompakten Mengen auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{R}^d} genannt Körner, welche die gleiche Verteilung wie haben und unabhängig von und sind. Das boolesche Modell ist definiert als
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{\xi_1,\xi_2,\dots\}} Keime genannt werden.[1]
Keim-Korn-Modell
Betrachtet man ein boolesches Modell und ersetzt den Poisson-Punktprozess durch einen allgemeinen Punktprozess, dann spricht man von einem Keim-Korn-Modell. Man betrachtet dabei einen markierten PunktprozessFehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi=\{[\xi_1,\Theta_1],[\xi_2,\Theta_2],\dots\}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_i\in\mathbb{R}^d} und kompakten Mengen , die Terminologie ist analog wie im booleschen Modell.
Literatur
- Dietrich Stoyan, Wilfrid S. Kendall, Joseph Mecke: Stochastic Geometry and Its Applications. 2. Auflage. Wiley, Chichester u. a. 1995, ISBN 0-471-95099-8 (Wiley series in probability and statistics).
- O. E. Barndorff-Nielsen, W. S. Kendall und M. N. M. van Lieshout (Hrsg.): Stochastic Geometry. Likelihood and Computation. Chapman & Hall/CRC, Boca Raton FL u. a. 1998, ISBN 0-8493-0396-6 (Monographs on statistics and applied probability 80).
Einzelnachweis
- ↑ Sung Nok Chiu, Dietrich Stoyan, Wilfrid S. Kendall, Joseph Mecke: Stochastic Geometry and Its Applications. Hrsg.: John Wiley & Sons Ltd. ISBN 0-471-95099-8.