Korowkin-Approximation

aus Wikipedia, der freien Enzyklopädie
Dies ist die aktuelle Version dieser Seite, zuletzt bearbeitet am 15. August 2022 um 16:32 Uhr durch imported>Anonym~dewiki(31560) (→‎Anwendung).
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Bei der Korowkin-Approximation handelt es sich um mathematische Konvergenzaussagen, in denen die Approximation von Funktionen durch gewisse Folgen von Funktionen untersucht wird. So werden in einer Anwendung (s. u.) stetige Funktionen durch Polynome approximiert. Die Besonderheit in der Korowkin-Approximation besteht darin, dass man zu Konvergenzaussagen für ganze Approximationsverfahren kommt, indem man die Konvergenz des Verfahrens nur an endlich vielen Funktionen prüft. Der Ausgangspunkt ist ein Satz von Pawel Petrowitsch Korowkin aus dem Jahre 1953.

Satz von Korowkin

Im folgenden Satz sei der Raum der stetigen reellwertigen Funktionen auf dem Intervall . Ferner stehe für die Einschränkung der Funktion auf . Für ist das die konstante Funktion mit dem Wert 1, für erhält man die identische Funktion , für hat man die Einschränkung der Quadratfunktion auf . Der Satz von Korowkin lautet wie folgt:

Ist eine Folge von positiven linearen Operatoren und ist gleichmäßig auf für , so ist gleichmäßig auf für alle .

Fasst man die Folge als ein Approximationsverfahren auf, so muss man die Konvergenz des Verfahrens im Sinne obigen Satzes nur für die drei Funktionen , nachweisen. Es folgt dann die Konvergenz des Verfahrens für alle Funktionen.

Anwendung

Zur Verdeutlichung soll hier die wohl bekannteste Anwendung wiedergegeben werden, eine Herleitung des weierstraßschen Approximationssatzes: Für sei das -te Bernsteinpolynom von , d. h.

.

Dann ist eine Folge positiver linearer Operatoren. Die Konvergenz für kann durch sehr elementare Umformungen an den auftretenden Summen gezeigt werden. Der Satz von Korowkin liefert dann, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B_n(f)\,\stackrel{n}{\rightarrow}\, f} für alle stetigen Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} gleichmäßig auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [0,1]} . Das bedeutet also, dass jede stetige Funktion auf [0,1] gleichmäßig durch Polynome approximiert werden kann, d. h., man erhält so eine komfortable Herleitung des weierstraßschen Approximationssatzes. Diese Argumentation lässt sich leicht auf das allgemeinere Intervall Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [a,b]} ausdehnen.

Korowkin-Approximation

Die Erweiterungen des Satzes von Korowkin auf allgemeinere Situationen bilden die sogenannte Korowkin-Approximationstheorie, die sich auf funktionalanalytische Methoden stützt. Man geht darin der folgenden Frage nach: In welchen Situationen kann man auf Konvergenzaussagen der Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n(f)\,\stackrel{n}{\rightarrow}\, f} schließen, indem man die Konvergenz für nur endlich viele der Funktionen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} nachweisen muss?

Dabei kann man den Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C[a,b]} einmal als Prototyp einer Banachalgebra ansehen und in diesem Kontext zu allgemeineren Konvergenzaussagen kommen, oder man versucht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C[a,b]} durch allgemeinere geordnete Vektorräume zu ersetzen. So gilt z. B. folgender Satz in Lp-Räumen, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 1\le p < \infty} :

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (P_n)_n} eine Folge positiver linearer Operatoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle L^p[1,\infty) \rightarrow L^p[1,\infty)} und gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|P_n(f)-f\|_p \,\stackrel{n}{\rightarrow}\, 0} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\in\{x^{-\lambda_1},x^{-\lambda_2}, x^{-\lambda_3} \} } , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle \frac{1}{p} < \lambda_1 < \lambda_2 < \lambda_3} , so folgt bereits Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|P_n(f)-f\|_p\, \stackrel{n}{\rightarrow} \,0} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\in L^p[1,\infty)} .

In den bisher betrachteten Beispielen hatte man Konvergenzaussagen der Art Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n(f)\rightarrow f} für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} aus einem geeigneten Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} , d. h. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n \rightarrow \mathrm{id}_X} punktweise auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} . Weitere Verallgemeinerungen erhält man, wenn man den id-Operator durch andere Operatoren ersetzt, also Konvergenzaussagen der Art Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle P_n \rightarrow S} punktweise untersucht. Schließlich kann man von den Operatoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\rightarrow X} auf Operatoren von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} in andere Räume verallgemeinern, z. B. auf Funktionale Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X\rightarrow {\mathbb R}} . Einen guten Überblick liefert das unten angegebene Buch von Altomare und Campiti.

Literatur

  • P. P. Korovkin: Über die Konvergenz positiver linearer Operatoren im Raum stetiger Funktionen. Dokl. Akad. Nauk. SSSR, Band 90, 1953, Seiten 961–964 (russisch).
  • F. Altomare, M. Campiti: Korovkin-type Approximation Theory and its Applications. de Gruyter Studies in Mathematics, Band 17, 1994, ISBN 978-3-11-014178-8.