Netzspannung
Als Netzspannung wird die von den Energieversorgern in den Stromnetzen bereitgestellte elektrische Spannung bezeichnet, die zur Übertragung elektrischer Energie eingesetzt wird. Im engeren Sinn wird unter Netzspannung häufig die Höhe der Wechselspannung in den Niederspannungsnetzen verstanden, im Gegensatz zu den Spannungen im Hochspannungsnetz.
Niederspannung
Kenndaten
Die vom Energieversorger (in Deutschland: Verteilnetzbetreiber) am Netzanschlusspunkt bereitgestellte Netzspannung ist gemäß IEC 60038 (in Deutschland: DIN EN 60038 VDE 0175-1) charakterisiert durch ihre
- Nennspannung:
- bei Einphasen-Systemen: Effektivwert der sinusförmigen Wechselspannung zwischen Außenleiter und Neutralleiter
- bei Dreiphasensystemen: Effektivwert der sinusförmigen Wechselspannung zwischen zwei Außenleitern
- Toleranz der Nennspannung
- Nennfrequenz
In Europa sind weitere Merkmale der Spannung (Frequenz, Höhe, Kurvenform und Symmetrie der Außenleiterspannungen) in der EN 50160 festgelegt.
Verteilung
Europa
An die Abnehmer im Niederspannungsnetz wird die Netzspannung meist mit folgenden Konfigurationen in TN-Systemen verteilt:
- den drei Außenleitern (umgangssprachlich Phasen) (L1, L2 und L3),
- einem Neutralleiter (N) und
- einem Schutzleiter (PE = protective earth oder Potential Erde)
oder
- den drei Außenleitern (Phasen) (L1, L2 und L3) und
- einem PEN-Leiter. Bei diesem sind Neutralleiter und Schutzleiter in einem einzigen Leiter kombiniert.
In Europa beträgt die Netzspannung 230 V ± 23 V bei einer Netzfrequenz von 50 Hz ± 0,2 Hz.[2]
In Dreiphasensystemen beträgt der Effektivwert der sinusförmigen Netzwechselspannung zwischen einem Außenleiter und dem Neutralleiter 230 V, zwischen zwei Außenleitern ca. 400 Volt.
Nord- und Südamerika
In Kanada, den USA, Mexiko und einigen nördlichen Staaten Südamerikas beträgt der Nennwert der Netzwechselspannung 120 V (früher 110 V). Für größere Verbraucher wie Klimaanlagen ist auch die doppelte Netzspannung von 240 V (früher 220 V) gebräuchlich. Die Netzfrequenz beträgt 60 Hz. Die Niederspannungsnetze sind in diesen Ländern als Einphasen-Dreileiternetz realisiert, ein Dreiphasenwechselstrom ist für kleinere Abnehmer oft nicht verfügbar; falls er existiert, so beträgt die Spannung 208 oder 415 V.
In Brasilien werden je nach Region 110 V, 127 V oder 220 V angeboten, jeweils mit 60 Hz. Die südlichen Länder Chile, Argentinien, Bolivien, Paraguay und Uruguay verfügen über 220 V bei 50 Hz.
Asien
Im japanischen Stromnetz hat die Netzspannung mit 100 V (regional 50 Hz oder 60 Hz) den weltweit niedrigsten Wert. In Taiwan beträgt die Netzspannung 110 V, in China, Hongkong und Thailand 220 V (50 Hz). Indien hat wie Europa ein 230-V-Netz (bei 50 Hz).
Geschichte
Bis 1987 betrug die Netzspannung in weiten Teilen Europas, auch in Deutschland, Österreich und der Schweiz, 220(±22) V, während sie im Vereinigten Königreich 240(±24) V betrug. Die seither in Europa gültige Spannung von 230(±23) V wurde in der internationalen Norm IEC 60038:1983 als Standardspannung festgelegt.
Ab 1987 erfolgte zunächst eine Umstellung in mehreren Abstufungen auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 230^{+13,8}_{-23}\,\mathrm{V}} . Seit 2009 darf die Netzspannung 230(±23) V betragen, womit 207 Volt bis 253 Volt erlaubt sind.[3][4][5]
Für 220 Volt spezifizierte elektrische Verbraucher konnten bei der Berücksichtigung der von 1987 bis 2009 gültigen Toleranzen auch mit betrieben werden, ohne die Toleranzbedingungen ernsthaft zu verletzen: Bei lag die maximale Spannung bei 242 V. Bei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 230^{+13,8}_{-23}\,\mathrm{V}} lag die maximale Spannung bei 243,8 Volt. Seit 2009 gilt dies nicht mehr, da die maximale Spannung nun 253 V beträgt.
Bei der minimalen Spannung wurde und wird das Toleranzband nicht verletzt: Während früher 198 Volt zulässig waren, sind es jetzt mindestens 207 Volt.
Die Erhöhung der Spannung um etwa 5 % führt bei vielen Geräten zu einer Erhöhung der Leistung. Bei Geräten, deren Funktion auf dem Ohmschen Widerstand beruht, z. B. Heizlüfter oder Wasserkocher, steigt die Leistungsaufnahme quadratisch im Verhältnis zum Spannungsanstieg, also um etwa 10 % der Leistung. Andererseits bleibt die letztlich zu bezahlende Energiemenge in vielen Fällen gleich, da beispielsweise ein Wasserkocher bei hörerer Leistung die gegebene Wassermenge entsprechend schneller aufwärmt und früher abschaltet.
Bei Glühlampen ist diese Erhöhung auf Grund der üblichen Kaltleiter-Charakteristik der Glühfäden etwas geringer. Erhöhte Spannungen verursachen höhere Ströme in den Leitungen. Bei Glühlampen kommt es über eine höhere Glühfadentemperatur jedoch zu einer Verkürzung der (statistisch wahrscheinlichen) Lebensdauer.
Störung der Netzspannung
Der sinusförmige Verlauf der Netzspannung wird zunehmend durch nichtlineare Verbraucher gestört. Dazu zählen Gasentladungslampen, Gleichrichter, Dimmer (Thyristor- und Triac-Steller), Frequenzumrichter, Kompaktleuchtstofflampen und Schaltnetzteile ohne Blindleistungskompensation (Power-Factor Correction, PFC).
Am 1. Januar 2001 trat eine EMV-Norm in Kraft, die Vorschriften über das zulässige niederfrequente Störspektrum (Oberschwingungen) für elektronische Verbraucher ab 75 Watt festlegt.
Auch Asynchronmotoren verursachen Netzverunreinigungen, das sogenannte Nutenpfeifen. Es entsteht durch die Unterteilung des Käfigläufers und die dadurch hervorgerufene, ins Netz zurückgespeiste Wechselspannung mit höherer, drehzahlabhängiger Frequenz.
Die Netzfrequenz wird heute entsprechend den Anforderungen des Europäischen Verbundnetzes sehr genau eingehalten, so dass sie als Referenzwert verwendet werden kann, z. B. zur Steuerung elektrischer Uhren oder für spannungsgeführte Wechselrichter zur Einspeisung von Solarstrom.
Schutz gegen Berührung
Die Berührung von Netzspannung führenden Leitern kann lebensgefährlich sein. Die Netzspannung liegt oberhalb der Schutzkleinspannung beziehungsweise Sicherheitskleinspannung. Aus diesem Grund müssen sowohl für die Versorgungsleitungen als auch für die mit Netzspannung betriebenen Geräte Schutzmaßnahmen gegen den elektrischen Schlag bei Berührung spannungsführender Leitungen getroffen werden.
Dazu gehören Schutzisolierung, Schutzerdung und Schutztrennung, die verhindern, dass berührbare leitfähige Teile (z. B. Gehäuse) bei einem Defekt gefährliche Spannungen annehmen.
Steckdosen müssen gegen Berührung der spannungsführenden Teile gesichert sein. Zum Schutz von Kindern gibt es zusätzlich Kindersicherungen, die ein Einführen von Gegenständen in die Öffnungen von Steckdosen verhindern sollen.
Mittelspannung
Größere Abnehmer wie beispielsweise Industriebetriebe oder Krankenhäuser werden üblicherweise direkt aus dem Mittelspannungsnetz mit Spannungen von 10 kV (Kilovolt) oder 20 kV, in Einzelfällen bis 30 kV, über eine oder mehrere betriebseigene Transformatorenstationen versorgt.
Hochspannung
Auch in Hochspannungsnetzen werden fast immer genormte Spannungen verwendet. So werden im Höchstspannungsnetz in Europa überwiegend die Spannungen 220 kV und 380 kV verwendet. Das Hochspannungsnetz wird im Regelfall mit 110 kV betrieben, allerdings gibt es auch 60-kV-Netze (insbesondere in Großstädten mit älteren Kabelsystemen).
In anderen Gebieten sind zum Teil andere Spannungsebenen üblich: So existieren in Russland Höchstspannungsnetze mit 1150 kV, 750 kV, 500 kV und 330 kV, während die Spannungen in den Höchstspannungsnetzen in den USA 765 kV, in Kanada 735 kV, 500 kV und 345 kV betragen. Für Hochspannungsnetze ist in den USA der Wert 132 kV üblich.
Im Mittelspannungsnetz sind neben 20 kV vor allem in städtischen Gebieten wegen der dort älteren Kabelsysteme auch 10 kV üblich. Bei der Hochspannungs-Gleichstrom-Übertragung gibt es keine normierten Spannungen.
In Bahnstrom-Speisenetzen beträgt die Normspannung in Deutschland und Österreich 110 kV, in der Schweiz 66 kV und 132 kV.
Bahnstrom
Im Bahnbetrieb selbst (Oberleitungen) haben sich zahlreiche Spannungen durchgesetzt. Bei Vollbahnen dominieren die folgenden fünf Systeme (siehe dazu Liste der Bahnstromsysteme):
- Einphasenwechselspannung 50 Hz, 25 kV
- Einphasenwechselspannung 60 Hz, 25 kV
- Einphasenwechselspannung 16⅔ Hz, 15 kV (nur Deutschland, Österreich und Schweiz [alle: mit wenigen Ausnahme-Strecken, seit 1995: 16,7 Hz]; Norwegen, Schweden)
- Gleichspannung 3 kV
- Gleichspannung 1,5 kV (u. a. Frankreich und Niederlande [neue Schnellfahrstrecken: 50 Hz, 25 kV])
Bei Straßen- und U-Bahnen ist die Spannung nicht genormt. In Deutschland, Österreich und der Schweiz werden hier meist Gleichspannungen von 500 V bis 750 V verwendet.
Siehe auch
- Übersicht der Netzspannungen weltweit
- Bordnetz
- Spannungsqualität
Literatur
- CENELEC: EN 60038:2012-04 CENELEC-Normspannungen. Beuth-Verlag.
- CENELEC: EN 50163:2004-11 Bahnanwendungen – Speisespannungen von Bahnnetzen. Beuth-Verlag.
Weblinks
- Netzspannungen + Steckernormen (auf Unterseite Elektrotechnik)
- Internationales Elektrotechnische Wörterbuch
Einzelnachweise
- ↑ Access to electricity (% of population). In: World Bank Open Data. Weltbank, 2019, abgerufen am 28. Oktober 2019.
- ↑ 0,2 Hz entspricht dem Toleranzfenster, das durch Primärregelung kompensiert werden kann.
- ↑ Spannungstoleranzen in der Energieversorgung (Memento vom 27. September 2007 im Internet Archive) Dipl.-Ing. Thomas Flügel am Universitätsklinikum Charité, Bereich VII C 1 Elektrotechnik, eingesehen am 7. Dezember 2006.
- ↑ Kurzfassung der EN 50160 (Memento vom 26. März 2013 im Internet Archive), eingesehen am 12. November 2014.
- ↑ Richtlinie 85/374/EWG (PDF) des Rates vom 25. Juli 1985 zur Angleichung der Rechts- und Verwaltungsvorschriften der Mitgliedstaaten über die Haftung für fehlerhafte Produkte. Diese Richtlinie erklärte auch Elektrizität zu einem Produkt, für dessen Fehler der Erzeuger haftbar gemacht werden kann (siehe auch Produkthaftungsgesetz).