Zweipunkteform

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von 2-Punkte-Form)

Die Zweipunkteform oder Zwei-Punkte-Form ist in der Mathematik eine spezielle Form einer Geradengleichung. In der Zweipunkteform wird eine Gerade in der euklidischen Ebene oder im euklidischen Raum mit Hilfe zweier Punkte der Geraden dargestellt. Die Koordinatendarstellung einer Gerade in der Ebene erfolgt in der Zweipunkteform mit Hilfe des Steigungsdreiecks der Geraden. In Vektordarstellung dient der Ortsvektor eines der beiden Punkte als Stützvektor der Gerade, während der Differenzvektor zu dem Ortsvektor des anderen Punkts den Richtungsvektor der Gerade bildet.

Die der Zweipunkteform entsprechende Form einer Ebenengleichung wird Dreipunkteform genannt.

Koordinatendarstellung

Darstellung

Zweipunkteform einer Geradengleichung

In der Zweipunkteform wird eine Gerade in der Ebene, die durch die beiden verschiedenen Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_1, y_1)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_2, y_2)} verläuft, als die Menge derjenigen Punkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x,y)} beschrieben, deren Koordinaten die Gleichung

erfüllen. Hierbei müssen und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_2} verschieden sein und darf nicht gleich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x_1} gewählt werden. Wird die Geradengleichung nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} aufgelöst, erhält man die explizite Darstellung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y = \frac{y_2 - y_1}{x_2 - x_1} \cdot (x - x_1) + y_1} ,

die auch für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x = x_1} verwendet werden kann. Ohne Einschränkung gültig ist die Darstellung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (y - y_1) \cdot (x_2 - x_1) = (x - x_1) \cdot (y_2 - y_1)} .

Beispiel

Sind beispielsweise die beiden gegebenen Geradenpunkte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1,3)} und , so erhält man als Geradengleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{y - 3}{x - 1} = \frac{2 - 3}{3 - 1}}

oder aufgelöst nach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y}

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y = \frac{2 - 3}{3 - 1} \cdot (x - 1) + 3 = - \frac{x}{2} + \frac{7}{2}}

beziehungsweise

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (y - 3) \cdot (3 - 1) = (x - 1) \cdot (2 - 3)} .

Herleitung

Diese Darstellung einer Geradengleichung folgt daraus, dass für die Steigung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} einer Gerade

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m = \frac{y_2 - y_1}{x_2 - x_1}}

gilt. Nach dem Strahlensatz kann nun anstelle des Punkts Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_2,y_2)} ein beliebiger Geradenpunkt gewählt werden, ohne dass sich das Verhältnis Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m} verändert. Damit gilt dann auch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle m = \frac{y - y_1}{x - x_1}} .

Durch Gleichsetzen dieser beiden Gleichungen folgt daraus dann die Zweipunkteform. Letztere Gleichung entspricht der Punktsteigungsform einer Geradengleichung.

Darstellung als Determinante

Eine Gerade, die durch zwei vorgegebene Punkte verläuft, kann mit Hilfe der Determinante einer Matrix auch über die Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det \begin{pmatrix} x & x_1 & x_2 \\ y & y_1 & y_2 \\ 1 & 1 & 1 \end{pmatrix} = 0}

oder äquivalent dazu durch

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \det \begin{pmatrix} x - x_1 & x_2 - x_1 \\ y - y_1 & y_2 - y_1 \end{pmatrix} = 0}

definiert werden. Eine solche Darstellung wird auch als Determinantenform einer Geradengleichung bezeichnet.

Vektordarstellung

Zweipunkteform einer Geradengleichung mit Vektoren

Darstellung

In Vektordarstellung wird eine Gerade in der Ebene in der Zweipunkteform durch die Ortsvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec p} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec q} zweier Punkte der Gerade beschrieben. Eine Gerade besteht dann aus denjenigen Punkten in der Ebene, deren Ortsvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x} die Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x = \vec p + t (\vec q - \vec p)}   für   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t \in \R}

erfüllen. Der Vektor dient dabei als Stützvektor der Gerade, während der Differenzvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec q - \vec p} den Richtungsvektor der Gerade bildet. Die Punkte der Gerade werden dabei in Abhängigkeit von dem Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} dargestellt, wobei jedem Parameterwert genau ein Punkt der Gerade entspricht. Damit handelt es sich hier um eine spezielle Parameterdarstellung der Gerade.

Beispiel

Ausgeschrieben lautet die Zweipunkteform einer Geradengleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} p_x \\ p_y \end{pmatrix} + t \begin{pmatrix} q_x-p_x \\ q_y-p_y \end{pmatrix} = \begin{pmatrix} p_x + t (q_x-p_x) \\ p_y + t (q_y-p_y) \end{pmatrix}}

mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t \in \R} . Sind beispielsweise die beiden Ortsvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec p = \tbinom{2}{2}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec q = \tbinom{4}{1}} , so erhält man als Geradengleichung

.

Jede Wahl von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} , beispielsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t=2} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t=-1} , ergibt dann einen Geradenpunkt.

Berechnung

Aus der Parameterform einer Geradengleichung mit Stützvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec p} und Richtungsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec u} lässt sich neben dem Stützvektor ein weiterer Ortsvektor eines Punkts der Gerade einfach durch Wahl von

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec q = \vec p + \vec u}

finden. Aus den weiteren Formen von Geradengleichungen, der Koordinatenform, der Achsenabschnittsform, der Normalenform und der hesseschen Normalform, wird zunächst die zugehörige Parameterform der Gerade ermittelt (siehe Berechnung der Parameterform) und daraus dann die Zweipunkteform.

Homogene Koordinaten

Eine verwandte Darstellung einer Gerade mit Hilfe zweier Geradenpunkte verwendet baryzentrische Koordinaten. Eine Gerade in der Ebene wird dann durch die Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x = \lambda \vec p + \mu \vec q}   für   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda, \mu \in \R}   mit   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lambda + \mu = 1}

beschrieben. Hierbei sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\lambda, \mu)} die normierten baryzentrischen Koordinaten eines Geradenpunkts. Sind beide Koordinaten positiv, so liegt der Geradenpunkt zwischen den beiden vorgegebenen Punkten, ist eine Koordinate negativ, außerhalb. Bei den baryzentrischen Koordinaten handelt es sich um spezielle homogene affine Koordinaten, während in der Zweipunkteform inhomogene affine Koordinaten verwendet werden.

Verallgemeinerung

Allgemein lassen sich durch die Zweipunkteform nicht nur Geraden in der Ebene, sondern auch in drei- und höherdimensionalen Räumen beschreiben. Im Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -dimensionalen euklidischen Raum besteht eine Gerade entsprechend aus denjenigen Punkten, deren Ortsvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x} die Gleichung

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x = \vec p + t (\vec q - \vec p)}   für   Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t \in \R}

erfüllen. Es wird dabei lediglich mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -komponentigen statt zweikomponentigen Vektoren gerechnet. Auch die Darstellung mit baryzentrischen Koordinaten bleibt in höherdimensionalen Räumen in analoger Form erhalten.

Literatur