Hessesche Normalform
Die hessesche Normalform, Hesse-Normalform oder hessesche Normalenform ist in der Mathematik eine spezielle Form einer Geradengleichung oder Ebenengleichung. Die hessesche Normalform dient häufig dazu, den Abstand eines Punktes zu einer Geraden (im Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb{R}^2} ) oder einer Ebene (im ) zu berechnen. Sie ist nach dem deutschen Mathematiker Otto Hesse benannt.
Hessesche Normalform einer Geradengleichung
Vektorform
In der hesseschen Normalform wird eine Gerade in der euklidischen Ebene durch einen normierten Normalenvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\vec n}_0} (Normaleneinheitsvektor) der Geraden, sowie ihren Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d \geq 0} vom Koordinatenursprung beschrieben. Eine Gerade besteht dann aus denjenigen Punkten in der Ebene, deren Ortsvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x} die Gleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x \cdot {\vec n}_0 - d = 0}
erfüllen. Hierbei bezeichnet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cdot} das Skalarprodukt.
Der Normalenvektor ist ein Vektor, der orthogonal zu der Geraden ist, d. h. einen rechten Winkel mit ihr bildet.
Als Normaleneinheitsvektor muss er die Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle | {\vec n}_0 | = 1} besitzen und er muss vom Koordinatenursprung in Richtung der Geraden zeigen, es muss also gelten.
In der hesseschen Normalform werden demnach die Punkte der Geraden implizit dadurch definiert, dass das Skalarprodukt aus dem Ortsvektor eines Geradenpunkts und dem Normalenvektor der Geraden gleich dem Abstand der Geraden vom Ursprung ist. Ein Punkt, dessen Ortsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x} die Gleichung nicht erfüllt, liegt für auf derjenigen Seite der Geraden, in die der Normalenvektor zeigt, und ansonsten auf der anderen Seite. Der Koordinatenursprung befindet sich immer auf der negativen Seite der Geraden, sofern sie keine Ursprungsgerade ist.
Beispiel
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\vec n}_0 = \begin{pmatrix}3/5\\ 4/5\end{pmatrix}} ein Normaleneinheitsvektor einer Geraden und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d=6/5} der Abstand der Geraden vom Ursprung, so erhält man die Normalform
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{3}{5} \, x + \tfrac{4}{5} \, y - \tfrac{6}{5} = 0} .
Jede Wahl von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x, y)} , die diese Gleichung erfüllt, beispielsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (2,0)} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (-2,3)} , entspricht dann einem Geradenpunkt.
Berechnung
Aus der Normalenform einer Geradengleichung mit Stützvektor und Normalenvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec n} lässt sich ein normierter und vorzeichenbehafteter Normalenvektor der Geraden durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\vec n}_0 = \begin{cases} \frac{\vec n}{| \vec n |} & \text{falls}~\vec p \cdot \vec n \geq 0 \\ -\frac{\vec n}{| \vec n |} & \text{falls}~\vec p \cdot \vec n < 0 \end{cases}}
bestimmen. Der Abstand der Geraden vom Ursprung kann dann durch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d = \vec p \cdot {\vec n}_0}
ermittelt werden. Dieser Abstand entspricht gerade der Länge der Orthogonalprojektion des Vektors Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec p} auf die Ursprungsgerade mit Richtungsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\vec n}_0} .
Aus den weiteren Formen von Geradengleichungen, der Koordinatenform, der Achsenabschnittsform, der Parameterform und der Zweipunkteform, wird zunächst die zugehörige Normalenform der Geraden ermittelt (siehe Berechnung der Normalenform) und daraus dann die hessesche Normalform.
Abstandsberechnung
Mit Hilfe der hesseschen Normalform kann der Abstand eines beliebigen Punkts Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q} in der Ebene von einer Geraden Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g} einfach dadurch berechnet werden, dass der Ortsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec q} des Punkts in die Geradengleichung eingesetzt wird:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(Q,g) = \vec q \cdot {\vec n}_0 - d} .
Dieser Abstand ist vorzeichenbehaftet: Für liegt der Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q} auf derjenigen Seite der Geraden, in die der Normalenvektor zeigt, ansonsten auf der anderen Seite.
Alternativ kann man den absoluten Betrag verwenden:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(Q, g) = |\vec q \cdot \vec n_0 - d|}
oder sogar den (nicht normierten) Normalenvektor benutzen:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(Q, g) = \left|\frac{\vec q \cdot \vec n - d}{|\vec n|}\right|}
Koordinatenform
Die allgemeine Koordinatenform einer Geradengleichung ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ax+by+c=0} .
Dividiert man diese Gleichung durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sqrt{a^2+b^2}} , erhält man die Hessesche Normalform der Koordinatengleichung:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \frac{ax+by+c}{\sqrt{a^2+b^2}}=0} .
Eigenschaften:
Der Abstand eines Punktes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x_0,y_0)} von der Geraden ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(x_0,y_0)=\left|\frac{ax_0+by_0+c}{\sqrt{a^2+b^2}}\right|\ } , speziell: Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle \quad d(0,0)=\left|{\frac {c}{\sqrt {a^{2}+b^{2}}}}\right|} .
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec n_0=\left( \frac{a}{\sqrt{a^2+b^2}},\frac{b}{\sqrt{a^2+b^2}}\right)^T\quad} ist ein Einheitsnormalenvektor der Geraden.
Ist die Geradengleichung in expliziter Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y=mx+d} , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ a=m,\;b=-1,\;c=d\ } . Die zur y-Achse parallele Gerade mit der Gleichung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x=d} hat die Hessesche Normalform Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x-d=0} .
Hessesche Normalform einer Ebenengleichung
Darstellung
Analog wird eine Ebene im dreidimensionalen Raum in der hesseschen Normalform durch einen normierten (möglicherweise mit einem Vorzeichen versehenen) Normalenvektor der Ebene sowie ihren Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d \geq 0} vom Koordinatenursprung beschrieben. Eine Ebene besteht dann aus denjenigen Punkten im Raum, deren Ortsvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x} die Gleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x \cdot {\vec n}_0 - d = 0}
erfüllen. Der Normalenvektor ist hier ein Vektor, der senkrecht auf der Ebene steht. Der Normalenvektor muss wiederum die Länge besitzen und vom Koordinatenursprung in Richtung der Ebene zeigen, es muss also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x \cdot {\vec n}_0 \geq 0} gelten.
In der hesseschen Normalform werden demnach die Punkte der Ebene implizit dadurch definiert, dass das Skalarprodukt aus dem Ortsvektor eines Ebenenpunkts und dem Normalenvektor der Ebene gleich dem Abstand der Ebene vom Ursprung ist. Wiederum liegt ein Punkt, dessen Ortsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\vec x}} die Gleichung erfüllt, auf der Ebene. Gilt , dann liegt der Punkt auf derjenigen Seite der Ebene, in die der Normalenvektor zeigt, ansonsten auf der anderen Seite. Der Koordinatenursprung befindet sich immer auf der negativen Seite der Ebene, sofern sie keine Ursprungsebene ist.
Beispiel
Ist beispielsweise ein normierter Normalenvektor einer gegebenen Ebene Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\vec {n}}_{0}={\begin{pmatrix}{\tfrac {2}{3}}\\{\tfrac {1}{3}}\\-{\tfrac {2}{3}}\end{pmatrix}}} und der Abstand der Ebene vom Ursprung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d=\tfrac43} , so erhält man als Ebenengleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{2}{3} \, x + \tfrac{1}{3} \, y - \tfrac{2}{3} \, z - \tfrac{4}{3} = 0} .
Jede Wahl von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x, y, z)} , die diese Gleichung erfüllt, beispielsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (1,2,0)} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (2,-2,-1)} , entspricht dann einem Ebenenpunkt.
Berechnung
Aus der Normalenform einer Ebenengleichung mit Stützvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec p} und Normalenvektor lässt sich ein normierter und vorzeichenbehafteter Normalenvektor der Ebene wie im zweidimensionalen Fall durch
bestimmen. Der Abstand der Ebene vom Ursprung kann dann durch
ermittelt werden. Dieser Abstand entspricht wiederum der Länge der Orthogonalprojektion des Vektors auf die Ursprungsgerade mit Richtungsvektor .
Aus den weiteren Formen von Ebenengleichungen, der Koordinatenform, der Achsenabschnittsform, der Parameterform und der Dreipunkteform, wird zunächst die zugehörige Normalenform der Ebene ermittelt (siehe Berechnung der Normalenform) und daraus dann die hessesche Normalform.
Abstand
Mit Hilfe der hesseschen Normalform kann der Abstand eines beliebigen Punkts Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q} im Raum von einer Ebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} wiederum dadurch berechnet werden, dass der Ortsvektor des Punkts in die Ebenengleichung eingesetzt wird:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(Q,E) = \vec q \cdot {\vec n}_0 - d} .
Dieser Abstand ist wieder vorzeichenbehaftet: Für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d(Q,E) > 0} liegt der Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q} auf derjenigen Seite der Ebene, in die der Normalenvektor zeigt, ansonsten auf der anderen Seite.
Alternative Formulierung mit einem Stützvektor
Obwohl häufig die Abstandsberechnung mithilfe der hesseschen Normalform mithilfe eines Abstandes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d} zum Koordinatenursprung gelehrt wird, wird gelegentlich auf eine ähnliche hessesche Normalenform mit Stützvektor zurückgegriffen.[1]
Die hessesche Normalenform einer Ebene lautet dann
- ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec p} ein Stützvektor der Ebene ist.
Abstandsformel
Daraus ergibt sich dann die Abstandsformel für einen Punkt Q mit dem Ortsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec q} von der Ebene Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle E} mit den Stützvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec p} und dem Normaleneinheitsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec n_0}
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle d(Q,E)=|({\vec {q}}-{\vec {p}})\cdot {\vec {n}}_{0}|} .
Verallgemeinerung für Hyperebenen
Allgemein wird durch die hessesche Normalform eine Hyperebene im -dimensionalen euklidischen Raum beschrieben. Im Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -dimensionalen euklidischen Raum besteht eine Hyperebene entsprechend aus denjenigen Punkten, deren Ortsvektoren Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x} die Gleichung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x \cdot {\vec n}_0 - d = 0}
erfüllen. Es wird dabei lediglich mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n} -komponentigen statt mit zwei- oder dreikomponentigen Vektoren gerechnet. Eine Hyperebene teilt den -dimensionalen Raum in zwei Teile, die Halbräume genannt werden. Ein Punkt, dessen Ortsvektor Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec x} die Gleichung erfüllt, liegt genau auf der Hyperebene. Gilt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\vec x} \cdot {\vec n}_0 > d} , dann liegt der Punkt in demjenigen Halbraum, in den der Normalenvektor zeigt, ansonsten in dem anderen.
Geschichte
Otto Hesse führte 1865 in seinem Buch Analytische Geometrie neben der allgemeinen Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ax+by+c=0} einer Geradengleichung die Normalform
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\cos\alpha+y\cos\beta-\delta=0}
ein. Dabei sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha, \beta } die Winkel der Normalen durch den Nullpunkt gegenüber den Koordinatenachsen und der Abstand der Geraden vom Nullpunkt. Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cos \beta=\sin\alpha } ist, schreibt man heute
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\cos\alpha+y\sin\alpha-\delta=0 .}
Analog ist die Normalform einer Ebene erklärt.
Hesse zeigt die wichtige geometrische Eigenschaft der Normalform: Man kann mit ihr auf einfache Weise den Abstand eines Punktes von einer Geraden oder einer Ebene bestimmen.
Diese vorteilhafte Art, eine Gerade oder Ebene zu beschreiben, wurde später von Autoren übernommen und als Hessesche Normalform bezeichnet[2].
In Hesses Buch ist auch die übliche Umrechnung der allgemeinen Form in die Normalform durch Multiplikation mit dem Faktor Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\tfrac {1}{\sqrt {a^{2}+b^{2}}}}} enthalten.
Siehe auch
Literatur
- O. Hesse: Vorlesungen aus der Analytischen Geometrie der graden Linie, des Punktes und des Kreises in der Ebene. E.B. Teubner, 1865.
- Alfred Clebsch, Dr. Ferdinand Lindemann: Vorlesungen über Geometrie , Springer-Verlag, 1891/2013, ISBN 3663157709, 9783663157700, S. 11.
- Lothar Papula: Mathematische Formelsammlung: Für Ingenieure und Naturwissenschaftler. Springer, 2009, ISBN 978-3-8348-9598-1.
- Harald Scheid, Wolfgang Schwarz: Elemente der Linearen Algebra und der Analysis. Springer, 2009, ISBN 978-3-8274-2255-2.