Frequenzgang
Der Frequenzgang ist der Zusammenhang zwischen Ein- und Ausgangssignal eines linearen zeitinvarianten Systems (LZI-System) bei einer sinusförmigen Anregung bezüglich der Amplitude und der Phase. Er ist daher eine komplexe Funktion der Frequenz.
Das Ausgangssignal hat wegen des linearen Verhaltens des Systems dieselbe Frequenz wie das Eingangssignal. Die beiden Signale unterscheiden sich jedoch in der Amplitude und in der Phase. Das Verhältnis der Amplituden von Eingangssignal und Ausgangssignal in Abhängigkeit von der Frequenz ist der Amplitudengang, bisweilen auch Betragsfrequenzgang genannt. Der Unterschied der Phase zwischen Eingangssignal und Ausgangssignal in Abhängigkeit von der Frequenz ist der Phasengang.
Der Frequenzgang kann auch aus der Fourier-Transformierten der Impulsantwort des Systems bestimmt werden.[1]
Allgemeines
Der Frequenzgang beschreibt den Zusammenhang zwischen sinusförmigen Schwingungen am Ein- und Ausgang eines Systems (Übertragungsgliedes) als Funktion der Frequenz f oder der Kreisfrequenz ω.
Das System hat dabei folgende Eigenschaften:
- Linearität
- Zeitinvarianz
- Stabilität (die Ausgangs-Schwingung klingt bei gleichbleibender Eingangs-Anregung nicht auf, z. B. wegen Resonanz)
Ein solches System hat bei harmonischem Eingangssignal
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x(t)=\hat x\sin(\omega t + \phi_x)\;}
ein harmonisches Ausgangssignal:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y(t)=\hat y(\omega) \sin(\omega t+\phi_y(\omega))\;} .
Auf Grund der Linearität wird die Kreisfrequenz Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \omega\;} nicht beeinflusst. Lediglich Amplitude (Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\hat {x}}\;} → Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat y\;} ) und Phase (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi_x\;} → Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi_y\;} ) werden verändert.
Der Amplituden-Frequenzgang ist das Verhältnis
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A(\omega)=\frac{\hat y(\omega)}{\hat x}} .
Der Phasen-Frequenzgang ist die Phasendifferenz
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi(\omega)=\phi_y(\omega)-\phi_x\;} .
Graphische Darstellung
Bode-Diagramm
Zur anschaulichen Darstellung des Frequenzgangs dient das Bode-Diagramm (siehe Abbildung). In je einem Graph ist der Amplituden-Frequenzgang und der Phasen-Frequenzgang dargestellt. Die Achsen sind mehrheitlich logarithmisch geteilt (außer der für die Phasenverschiebung), was den Gebrauch des Diagramms erleichtert. So ist zum Beispiel die Multiplikation zweier Frequenzgänge eine einfache Streckenaddition, und die Inversion eines Frequenzgangs ergibt sich durch Spiegelung an der f- oder ω- Achse im Diagramm.[2]
Ortskurve
Eine alternative anschauliche Darstellung des Frequenzgangs ist seine Ortskurve. Dieses Zeigerbild enthält im Gegensatz zum Bode-Diagramm beide Informationen: Die Zeigerlänge entspricht dem Amplitudenverhältnis, sein Argument φ ist die Phasenverschiebung.
Diese Ortskurve wird auch Nyquist-Diagramm genannt. Mit der Vorstellung, dass in der (komplexen) Ebene lediglich die Spitzen eingefrorener Zeiger zur Ortskurve verbunden sind, kann der Frequenzgang ohne Kenntnis der komplexen Mathematik und der mathematischen Transformationen aus dem Zeit- in den Frequenzbereich anschaulich gemacht werden.
Fourier-Transformation
LZI-Systeme mit endlich vielen inneren Freiheitsgraden werden durch die lineare Differentialgleichung n-ter Ordnung im Zeitbereich (Zeit als Variable) beschrieben:
- .
Die Anwendung der Fourier-Transformation auf die Differentialgleichung führt zum Frequenzgang als Bild-Funktion in der komplexen Zahlenebene.
Frequenzgang Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H(\mathrm j\omega)} ist der Quotient aus den Fouriertransformierten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y(\mathrm j\omega)} des Ausgangs-Signals und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X(\mathrm j\omega)} des Eingangs-Signals:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H(\mathrm j\omega) = \frac{Y(\mathrm j\omega)}{X(\mathrm j\omega)} = \frac{b_{m}(\mathrm j\omega)^{m} + \ldots + b_1(\mathrm j\omega) + b_0}{(\mathrm j\omega)^{n} + a_{n-1}(\mathrm j\omega)^{n-1} + \ldots + a_1(\mathrm j\omega) + a_0} } .
Fourier-Rücktransformierte des Frequenzganges ist die Gewichtsfunktion oder Impulsantwort:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle g(t) =\frac{1}{2\pi}\int_{-\infty}^\infty H(\mathrm j\omega) e^{\mathrm j\omega t} \mathrm d\omega} .
Schreibweisen des Frequenzgangs:
- mit Real- und Imaginärteil
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H(\mathrm j\omega)=\operatorname{Re} H(\mathrm j\omega) + \mathrm j\,\operatorname{Im} H(\mathrm j\omega)} .
- mit Betrag und Phase
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle H(\mathrm {j} \omega )=\left|H(\mathrm {j} \omega )\right|e^{\mathrm {j} \varphi (\mathrm {j} \omega )}} .
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left|H(\mathrm j\omega)\right| = \sqrt{(\operatorname{Re} H(\mathrm j\omega))^2 + (\operatorname{Im} H(\mathrm j\omega))^2}} Betrag
- Phase
Zusammenhang mit der Übertragungsfunktion
siehe Hauptartikel: Übertragungsfunktion
Mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma=0} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s=\sigma+j\omega} geht die Laplace-Übertragungsfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(s)} in den Frequenzgang über.
Der Frequenzgang beschreibt daher keine Übergangsvorgänge (Einschwingvorgänge durch Zeitkonstanten). Und er ist auch nicht geeignet zur Beschreibung von instabilen aufklingenden Systemen.
Die Laplace-Übertragungsfunktion ist in diesen Aspekten durch den zusätzlichen Parameter Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sigma} allgemeiner.
Experimentelle Bestimmung des Frequenzgangs
Die Bedeutung des Frequenzgangs für LZI-Systeme beruht auf der Einfachheit seiner experimentellen Gewinnung. Dazu wird das System mit einem Signalgenerator mit verschiedenen Frequenzen angeregt und die Systemantwort gemessen.
Bei Systemen mit einem schnellen Einschwingverhalten nach einer (kleinen) Frequenzänderung kann die Messung mittels eines Wobbelgenerators erfolgen, wie zum Beispiel in der Nachrichtentechnik. Der Wobbelgenerator ist ein spezieller Signalgenerator, der seine Ausgangs-Frequenz kontinuierlich ändert.
Falls jedoch nach jeder Frequenzanregung zunächst eine gewisse Zeit abgewartet werden muss, bis sich die Amplitude der Systemantwort nicht mehr ändert, dann ist der Prozess mit Hilfe eines Signalgenerators zeitaufwändiger.[3]
In diesem Fall ist es einfacher das System mit allen interessierenden Frequenzen gleichzeitig anzuregen und den Frequenzgang beispielsweise über die Messung der Impulsantwort zu bestimmen.
In jedem Fall benötigt die experimentelle Frequenzgang-Bestimmung eine zeitsynchrone Messung des Eingangssignals x und des Ausgangssignal y des Systems.
Wortbedeutung im weiteren Sinn
In einem allgemeineren Sinn kann mit „Frequenzgang“ auch eine andere frequenzabhängige Eigenschaft eines physikalischen Systems gemeint sein, wie zum Beispiel die Leistungsaufnahme, die Temperatur oder die Strahlungsleistung als Funktion der Frequenz.[4][5] Gebräuchlicher als z. B. „Frequenzgang einer Leistung“ ist allerdings die Ausdrucksweise „Frequenzabhängigkeit einer Leistung“. Einer Quelle zufolge bezeichnet „Frequenzgang“ im Sprachgebrauch der Regelungstechniker auch das bekannte Frequenzspektrum von speziellen nichtperiodischen Anregungssignalen.[6]
Literatur
- Heinz Unbehauen: Regelungstechnik I. Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, 1997, ISBN 3-528-83332-7.
- Jan Lunze: Regelungstechnik 1. 6. Auflage. Springer Verlag, Berlin 2007, ISBN 978-3-540-70790-5.
- Wilfried Weißgerber: Elektrotechnik für Ingenieure 2. Vieweg, 2007, ISBN 978-3-8348-0191-3.
- Günther Schmidt: Grundlagen der Regelungstechnik. Springer Verlag, 1987, ISBN 3-540-17112-6.
Weblinks
- Kennen Sie den Frequenzgang des Gehörs? (PDF; 112 kB)
Einzelnachweise
- ↑ Bernd Girod, Rudolf Rabenstein, Alexander Stenger: Einführung in die Systemtheorie. 4. Auflage. Teubner, Wiesbaden 2007, ISBN 978-3-8351-0176-0.
- ↑ Winfried Oppelt: Kleines Handbuch technischer Regelvorgänge. Verlag Chemie, 1972, ISBN 3-527-25347-5, S. 60.
- ↑ Günther Schmidt: Grundlagen der Regelungstechnik. Springer Verlag, 1987, ISBN 3-540-17112-6
- ↑ Die Brockhaus Enzyklopädie-Online. Bibliographisches Institut & F. A. Brockhaus; abgerufen am 22. Juni 2010. Der einleitende Text definiert den Begriff Frequenzgang folgendermaßen: „Physik, Technik: allgemein der Verlauf einer physikalischen Größe als Funktion der Frequenz (der Kreisfrequenz ω), auch Bezeichnung für diese Funktion selbst; im engeren Sinn Bezeichnung für eine komplexe Funktion, die das Zeitverhalten zeitinvarianter linearer Übertragungsglieder der Nachrichten- oder Regelungstechnik kennzeichnet“
- ↑ Kurt Magnus, Karl Popp: Schwingungen – Eine Einführung in die physikalischen Grundlagen und die theoretische Behandlung von Schwingungsproblemen. Teubner, ISBN 3-519-52301-9, S. 30 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Kurt Reinschke: Lineare Regelungs- und Steuerungstheorie. Springer-Verlag, S. 44 (eingeschränkte Vorschau in der Google-Buchsuche)