Antidiagonalmatrix

aus Wikipedia, der freien Enzyklopädie

Als Antidiagonalmatrix bezeichnet man im mathematischen Teilgebiet der linearen Algebra eine quadratische Matrix, bei der alle Elemente außerhalb der Gegendiagonale Null sind. Sie ist also von der Form

Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle A={\begin{pmatrix}0&\cdots &0&q_{n}\\\vdots &\scriptstyle \cdot ^{\,\scriptstyle \cdot ^{\,\scriptstyle \cdot }}&q_{n-1}&0\\0&\scriptstyle \cdot ^{\,\scriptstyle \cdot ^{\,\scriptstyle \cdot }}&\scriptstyle \cdot ^{\,\scriptstyle \cdot ^{\,\scriptstyle \cdot }}&\vdots \\q_{1}&0&\cdots &0\end{pmatrix}}} .

Formale Definition

Eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\times n} -Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=(a_{ij})_{i,j=1,\ldots,n}} heißt antidiagonal, wenn für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i,j\in\left\{1,\ldots,n\right\}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i+j\not=n+1} der -Eintrag Null ist:

.

Beispiel

Ein Beispiel einer Antidiagonalmatrix ist

.

Eigenschaften

Die Determinante von

ist

Falls alle von Null verschieden sind, dann ist invertierbar und die zu inverse Matrix ist

-

Das Produkt zweier Antidiagonalmatrizen ist eine Diagonalmatrix. Das Produkt einer Antidiagonalmatrix mit einer Diagonalmatrix (oder umgekehrt) ist eine Antidiagonalmatrix.

Antidiagonalmatrizen sind persymmetrisch.