Antidiagonalmatrix
Als Antidiagonalmatrix bezeichnet man im mathematischen Teilgebiet der linearen Algebra eine quadratische Matrix, bei der alle Elemente außerhalb der Gegendiagonale Null sind. Sie ist also von der Form
- Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle A={\begin{pmatrix}0&\cdots &0&q_{n}\\\vdots &\scriptstyle \cdot ^{\,\scriptstyle \cdot ^{\,\scriptstyle \cdot }}&q_{n-1}&0\\0&\scriptstyle \cdot ^{\,\scriptstyle \cdot ^{\,\scriptstyle \cdot }}&\scriptstyle \cdot ^{\,\scriptstyle \cdot ^{\,\scriptstyle \cdot }}&\vdots \\q_{1}&0&\cdots &0\end{pmatrix}}} .
Formale Definition
Eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n\times n} -Matrix Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A=(a_{ij})_{i,j=1,\ldots,n}} heißt antidiagonal, wenn für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i,j\in\left\{1,\ldots,n\right\}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle i+j\not=n+1} der -Eintrag Null ist:
- .
Beispiel
Ein Beispiel einer Antidiagonalmatrix ist
- .
Eigenschaften
Die Determinante von
ist
Falls alle von Null verschieden sind, dann ist invertierbar und die zu inverse Matrix ist
- -
Das Produkt zweier Antidiagonalmatrizen ist eine Diagonalmatrix. Das Produkt einer Antidiagonalmatrix mit einer Diagonalmatrix (oder umgekehrt) ist eine Antidiagonalmatrix.
Antidiagonalmatrizen sind persymmetrisch.