Areasinus hyperbolicus und Areakosinus hyperbolicus

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Arsinh)

Areasinus hyperbolicus (abgekürzt oder ) und Areakosinus hyperbolicus (abgekürzt oder ) gehören zu den Areafunktionen und sind die Umkehrfunktionen von Sinus hyperbolicus und Kosinus hyperbolicus.

Definitionen

Die Funktionen lassen sich durch die folgenden Formeln ausdrücken:

Areasinus hyperbolicus:

mit

Areakosinus hyperbolicus:

für

Hier steht für den natürlichen Logarithmus.

Umrechnung

Zusammen mit der Signumfunktion gilt der Zusammenhang:

Für gilt:

Eigenschaften

Graph der Funktion arsinh(x)
Graph der Funktion arcosh(x)
  Areasinus hyperbolicus Areakosinus hyperbolicus
Definitionsbereich
Wertebereich
Periodizität keine keine
Monotonie streng monoton steigend streng monoton steigend
Symmetrien Punktsymmetrie zum Ursprung,
ungerade Funktion
keine
Asymptote für für
Nullstellen
Sprungstellen keine keine
Polstellen keine keine
Extrema keine keine
Wendepunkte keine

Reihenentwicklungen

Wie bei allen trigonometrischen und hyperbolischen Funktionen gibt es auch Reihenentwicklungen. Dabei treten die Doppelfakultät und die Verallgemeinerung des Binomialkoeffizienten auf.

Die Reihenentwicklungen lauten:

Ableitungen

Die Ableitung des Areasinus hyperbolicus lautet:

Die Ableitung des Areakosinus hyperbolicus lautet:

für x > 1

Stammfunktionen

Die Stammfunktionen des Areasinus hyperbolicus und des Areakosinus hyperbolicus lauten:

Andere Identitäten


Numerische Berechnung

Grundsätzlich kann der Areasinus hyperbolicus über die bekannte Formel

berechnet werden, wenn die natürliche Logarithmusfunktion zur Verfügung steht. Es gibt jedoch folgende Probleme:

  • Große, positive Operanden lösen einen Überlauf aus, obwohl das Endergebnis immer darstellbar ist.
  • Für Operanden nahe an 0 kommt es zu einer numerischen Auslöschung, womit das Ergebnis ungenau wird.

Zunächst einmal soll der Operand positiv gemacht werden:

für angewandt.

Für können dann folgende Fälle unterschieden werden:

Fall 1: ist eine große, positive Zahl mit :

wobei die Anzahl der signifikanten Dezimalziffern des verwendeten Zahlentyps ist, was zum Beispiel beim 64-Bit-Gleitkommatyp double 16 ist.
Diese Formel ergibt sich aus folgender Überlegung:
ist die kleinste positive Zahl, ab der die letzte Vorkommastelle nicht mehr gespeichert ist, weshalb gilt. Jetzt soll dasjenige berechnet werden, ab dem gilt: . Dies gilt für , woraus folgt. Somit kann man in der bekannten Formel für den Areasinus hyperbolicus durch ersetzen:

Fall 2: ist nahe an 0, z. B. für :

Verwendung der Taylorreihe:

Fall 3: Alle übrigen :

In gleicher Weise kann der Areacosinus hyperbolicus über die Formel

berechnet werden. Auch hier entsteht jedoch das Problem mit den großen Operanden; die Lösung ist dieselbe wie beim Areasinus:

Fall 1: ist eine große positive Zahl mit :

wobei die Anzahl der signifikanten Dezimalziffern des verwendeten Zahlentyps ist.

Fall 2: :

Das Ergebnis ist nicht definiert.

Fall 3: Alle übrigen , d. h. für :

Siehe auch

Weblinks

Einzelnachweise