Term
In der Mathematik ist ein Term eine sinnvolle Kombination aus Zahlen, Variablen, Symbolen für mathematische Verknüpfungen und Klammern. Ausgangspunkt sind die atomaren Terme, zu denen alle Zahlen (Konstanten) und Variablen gehören. Terme können als die syntaktisch korrekt gebildeten Wörter oder Wortgruppen in der formalen Sprache der Mathematik gesehen werden.
In der Praxis wird der Begriff häufig benutzt, um über einzelne Bestandteile einer Formel oder eines größeren Terms zu reden. So kann man bspw. für die lineare Funktion von einem linearen Term und einem konstanten Term reden.
Umgangssprachliche Erklärung
Der Begriff „Term“ wird umgangssprachlich für alles verwendet, das eine Bedeutung trägt. Im engeren Sinn sind mathematische Gebilde gemeint, die man prinzipiell ausrechnen kann, zumindest wenn man den darin enthaltenen Variablen Werte zugewiesen hat. So ist zum Beispiel ein Term, denn weist man den darin enthaltenen Variablen und einen Wert zu, so erhält auch der Term einen Wert. Statt Zahlen können hier auch andere mathematische Objekte in Betracht kommen,[1] so ist etwa ein Term, der einen Wert erhält, wenn man den booleschen Variablen einen Wahrheitswert zuordnet.[2] Im Normalfall (einsortige Logik) nimmt die genaue mathematische Definition allerdings keinen Bezug auf die möglichen Wertzuweisungen, wie unten ausgeführt wird.
Grob kann man sagen, dass ein Term eine Seite einer Gleichung oder Relation, z. B. einer Ungleichung, ist. Die Gleichung oder Relation selbst ist kein Term, sie besteht aus Termen.
Mit Termen können üblicherweise folgende Operationen ausgeführt werden:
- ausrechnen (dazu rechnet man erst die „inneren“ Funktionen aus und dann die äußeren):
- nach bestimmten Rechenregeln umformen: durch Anwendung des Distributivgesetzes und einiger anderer „erlaubter“ Regeln.
- miteinander vergleichen, falls Relationen für die passenden Typen definiert sind:
- ineinander einsetzen (oft wird ein Term anstelle einer Variable eines anderen Terms eingesetzt). Eine spezielle Form der Einsetzung ist die Substitution, bei der ein Term mit Variablen durch einen anderen Term mit Variablen (meist eine einzelne Variable) ersetzt wird: entsteht aus durch Ersetzung von durch .
Häufig werden Terme oder Teilterme nach ihrer inhaltlichen Bedeutung benannt. Im Term , der in der Physik die Gesamtenergie eines Massepunktes beschreibt, nennt man den ersten Summanden „Term der kinetischen Energie“ und den zweiten „Term der potentiellen Energie“. Oft werden auch charakteristische Eigenschaften zur Benennung herangezogen. So ist mit dem „quadratischen Term“ in der Teilterm gemeint, weil dies der Teilterm ist, der die Variable in quadrierter Form enthält.
Formale Definition
Die genaue mathematische Definition eines Terms, wie sie in der mathematischen Logik gegeben wird, benennt Regeln, nach denen Terme aufgebaut werden. Ein Term ist dann jeder Ausdruck, der durch Anwendung solcher Regeln entsteht:[3][4]
- Jedes Variablensymbol Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle v} ist ein Term.
- Jedes Konstantensymbol Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} ist ein Term.
- Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -stelliges Funktionssymbol und sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_1,\dotsc, t_k} Terme, so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(t_1,\dotsc, t_k)} ein Term.
Die Menge aller Terme zu einer gegebenen Signatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol S}
und Variablenmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal V}
sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\mathcal T}_{\boldsymbol S,\mathcal V}}
, für Terme ohne Variablen (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal V = \emptyset}
) einfach Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\mathcal T}_{\boldsymbol S}}
.
Durch die Funktionssymbole werden Verknüpfungen verschiedener Stelligkeit zwischen den Elementen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\mathcal T}_{\boldsymbol S,\mathcal V}}
bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol{\mathcal T}_{\boldsymbol S}}
induziert, mit denen diese Mengen von Zeichenketten selbst zu einer algebraischen Struktur, der Termalgebra bzw. Grundtermalgebra werden.
Siehe auch Elementare Sprache #Terme, Logische Formeln.
Anmerkungen
- Betrachtet man die mit + bezeichnete Addition, ist nach obiger, formaler Definition Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle +(x,y)} ein Term, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x+y} hingegen nicht. Trotzdem zieht man die leichter lesbare Form Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x+y} vor, letzteres ist eine alternative, vorteilhafte Schreibweise für den korrekten Term Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle +(x,y)} . Demnach ist die Zeichenkette Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x+y} ein Name für einen Term, das heißt ein metasprachlicher Ausdruck für einen Term. Solange klar ist, dass man solche Zeichenketten jederzeit in die formal korrekte Schreibweise zurückübersetzen könnte, wenn man das wollte, entstehen hier keine Schwierigkeiten.
- Manche Funktionen (beispielsweise die Potenzfunktion, Multiplikation mit Variablen) werden statt durch ein eigenes Funktionssymbol durch Positionierung der Terme zueinander dargestellt (beispielsweise Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^y} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle xy} )
- Bei verschachtelten Klammersetzungen werden manchmal auch [ ] und { } eingesetzt, um die Zusammengehörigkeit der Klammern deutlicher zu machen, z. B. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [2(x+y)]^2}
- Es gibt auch klammerfreie Notationen wie etwa die polnische Notation, diese sind in der Regel aber nicht so leicht zu lesen. Die dritte obige Definitionszeile lautet in dieser Notation (vergleiche: Prädikatenlogik erster Stufe #Terme):
- o Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} ein k-stelliges Funktionssymbol und sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_1,\dotsc, t_k} Terme, so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle ft_1,\dotsc, t_k} ein Term.
- Gelegentlich werden die Konstanten als nullstellige Funktionen subsumiert, was sich besonders natürlich in der klammerfreien Notation darstellt.
- Von einem möglichen Einsetzen von Werten in die Variablen, wie es in der obigen umgangssprachlichen Beschreibung vorkam, ist hier gar nicht die Rede. „Term“ ist hier ein rein syntaktischer Begriff, denn er muss nur gewissen Aufbauregeln genügen. Terme erhalten im Nachhinein eine semantische Bedeutung, indem man die möglichen Werte von Variablen in sogenannten Modellen einschränkt. Die Terme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x+y)^2} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x^2+2xy+y^2} sind zunächst als Zeichenketten verschieden. Betrachtet man diese Terme aber im Modell der reellen Zahlen, so zeigt sich, dass sie stets dieselben Werte annehmen. Die Termgleichheit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x+y)^2 = x^2+2xy+y^2} ist dann so zu verstehen, dass Gleichheit für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x,y\in \R} besteht. Für andere Modelle kann das durchaus falsch sein, wie zum Beispiel für die Menge der Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 2{\times}2} -Matrizen.
- Die hier wiedergegebene Definition umfasst keine Terme mit gebundenen Variablen, wie etwa vielgliedrige Summen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{i=1}^n i^2 } , Integrale Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int_a^b \sin(k \cdot t) dt} oder Grenzwerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{n\to\infty} (2\cdot n+3)/n} . Da bei der Einbindung von Quantoren in Ausdrücke (s. u.) ebenfalls gebundene Variablen vorkommen, gibt dies ein Beispiel, wie das geschehen könnte.[5] Wie bei den Ausdrücken wird man dann Terme ohne freie Variablen als geschlossen bezeichnen. Ihre Wertzuweisung hängt dann nicht von der Variablenbelegung (s. u. #Termauswertung) ab.[6]
- Neuerdings gewinnt die Baumdarstellung von Termen zunehmend an Bedeutung. Eine ausführliche Darstellung findet sich bei Kleine Büning (2015).[7]
Beispiel
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{xy}{4}} ist ein Term, denn
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} sind Terme (als Variablen),
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 4} ist ein Term (als Konstante),
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle xy} ist ein Term („Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{multipliziere}(x,y)} “),
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tfrac{xy}{4}} ist ein Term (Das Divisionssymbol ist der Bruchstrich (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle -} ) gleich wie Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle xy:4} , „Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{dividiere}(\operatorname{multipliziere}(x,y),4)} “)
Anwendungen
Bildet man einen Term mit Variablen, so beabsichtigt man in Anwendungen häufig ein Ersetzen dieser Variablen durch bestimmte Werte, die einer gewissen Grundmenge bzw. Definitionsmenge entstammen. Zum Begriff des Terms selbst ist die Angabe einer solchen Menge nach obiger, formaler Definition nicht erforderlich. Man interessiert sich dann nicht mehr für den abstrakten Term, sondern für eine durch diesen Term definierte Funktion in einem bestimmten Modell.
So lautet eine Faustformel zum Ausrechnen des Anhalteweges (Bremsweg plus Reaktionsweg) eines Autos in Metern Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\tfrac{x}{10}\right)^2+\left(\tfrac{x}{10}\cdot3\right)} . Diese Zeichenkette ist ein Term. Wir beabsichtigen, für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} die Geschwindigkeit des Autos in km pro Stunde einzusetzen, um den Wert, den der Term dann annimmt, als Bremsweg in Metern zu verwenden. Wenn ein Auto zum Beispiel 160 km/h fährt, liefert die Formel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left(\tfrac{160}{10}\right)^2+\left(\tfrac{160}{10}\cdot3\right)} einen Anhalteweg von 304 m.
Wir verwenden den Term hier zur Definition der Zuordnungsvorschrift einer Funktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f\colon \R^+_0 \to \R^+_0} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\mapsto\left(\tfrac{x}{10}\right)^2+\left(\tfrac{x}{10}\cdot3\right)} .
Terme selbst sind weder wahr noch falsch und haben auch keine Werte. Erst in einem Modell, das heißt mit Angabe einer Grundmenge für die auftretenden Variablen, können Terme Werte annehmen.
Algebraische Umformungen
Lange, komplizierte Terme können oft vereinfacht werden, indem man auf sie Rechenregeln anwendet, die den Wert des Terms unverändert lassen, beispielsweise das Kommutativgesetz, Assoziativgesetz oder Distributivgesetz:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (x+y)(x-y)} Ausmultiplizieren
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle =x^2 - xy + yx - y^2} Kommutativgesetz anwenden
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle =x^2 - y^2}
Der Begriff des Terms sieht gemäß obiger Definition solche Umformungen nicht vor, es handelt sich jeweils um verschiedene Terme. Mit diesen algebraischen Umformungen ist stets gemeint, dass sich die Werte, die ein Term bei Wahl einer bestimmten Grundmenge annehmen kann, durch diese Umformungen nicht ändern. Das hängt von der Grundmenge ab! So sind obige Umformungen nur in solchen Grundmengen korrekt, in denen die verwendeten Gesetze wie zum Beispiel das Kommutativgesetz gelten.
Solche algebraischen Umformungen werden trotzdem Termumformungen genannt, da man nach in der vereinbarten Grundmenge geltenden Regeln von einem Term zu einem anderen übergeht, ohne dessen mögliche Werte zu ändern. Es werden damit folgende Ziele verfolgt:
- Vereinfachung von Termen
- Aufpumpen von Termen zur Erzeugung gewünschter Strukturen wie zum Beispiel bei der quadratischen Ergänzung
- Herauspräparieren gewünschter Teilterme wie zum Beispiel bei der Cardanischen Formel: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (u+v)^3 = u^3 + v^3 + 3uv(u+v)}
Abgrenzung zum Ausdruck
Ausdrücke
Ein Ausdruck[8] ist wie ein Term eine formale Zeichenkette; ihr Aufbau ist gemäß einer Logik definiert, z. B. der Prädikatenlogik. In der Prädikatenlogik erster Stufe mit Gleichheit definiert man:[9][10]
- Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_1, t_2} Terme, so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_1 = t_2} ein Ausdruck.
- Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_1, \dotsc, t_k} Terme und ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} -stelliges Relationssymbol, so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R t_1 \dotso t_k} ein Ausdruck.
- Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi} Ausdrücke, so sind auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\varphi \land \psi)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\varphi \lor \psi)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\varphi \rightarrow \psi)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\varphi \leftrightarrow \psi)} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\exists x \varphi)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\forall x \varphi)} Ausdrücke.[11]
Damit kann man durch mehrfache Anwendung dieser Bildungsgesetze beliebig komplizierte Ausdrücke aufbauen. Nach dieser Definition kann man Terme grob als das beschreiben, was auf einer Seite einer Gleichung stehen oder in eine Relation eingesetzt werden kann; Terme sind genau diese Bestandteile von Ausdrücken.
Die genaue Definition des Ausdrucks hängt von der betrachteten Logik ab, in der Prädikatenlogik zweiter Stufe nimmt man beispielsweise noch das Einsetzen von Termen in Relationsvariablen und Quantifizierungen über Relationen hinzu.
Beispiel
Zur Beschreibung der reellen Zahlen benutzt man für die Multiplikation das Verknüpfungszeichen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cdot} und für die Ungleichung das Relationssymbol Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \le} , ferner Konstanten wie 0, 1, 2, … Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x,y} Variablen, so sind definitionsgemäß auch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\cdot x} , die Konstante 0 und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y} Terme.
Nach Definition des Ausdrucks sind
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\cdot x = y} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\le y}
Ausdrücke, denn die erste Zeichenkette ist die Gleichheit zweier Terme; die zweite ist eine Relation, in die zwei Terme eingesetzt wurden. Damit ist auch
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle 0\le y \rightarrow (\exists x (x\cdot x = y))}
ein Ausdruck und schließlich
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall y (0\le y \rightarrow (\exists x( x\cdot x = y)))}
Dieser Ausdruck ist im Modell der reellen Zahlen wahr. Es ist wichtig zu verstehen, dass obiger Aufbau des Ausdrucks kein Beweis ist; es handelt sich lediglich um die Bildung einer Zeichenkette nach gewissen Regeln. Wahr oder falsch kann eine damit einhergehende Aussage erst in einem Modell sein, dort kann sie gegebenenfalls bewiesen werden. Obige Aussage ist im Modell der rationalen Zahlen bekanntlich falsch, denn die rationale Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle y=2} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \ge 0} , aber es gibt keine rationale Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} , die Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x\cdot x = y} erfüllt.
Terme in vielsortiger Logik
Bei der Betrachtung heterogener Strukturen wie zum Beispiel Vektorräumen teilt man die Objekte gerne in verschiedene Sorten ein, bei Vektorräumen etwa Vektoren und Skalare. Die auftretenden Terme sind dann nach diesen Sorten zu unterscheiden. Als weitere Komponenten der Theorie kommt daher zunächst eine Menge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} von Sortenbezeichnern hinzu.
Durch die vielsortige Signatur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol S} wird den Symbolen nicht nur eine einfache Stelligkeitszahl zugeordnet, sondern (bei Relationen und Funktionen) eine Sequenz (Tupel) von Argumentsorten, und (bei Konstanten und Funktionen) eine Wertsorte.
Bezüglich der Variablensorten finden sich in der Literatur im Wesentlichen zwei Vorgehensweisen:[12]
- Es wird eine einzige Variablenmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal V} vorgesehen. Eine (ggf. nur partielle) Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu: \mathcal V \not\to T} , die Variablenbezeichnern eine Sorte zuordnet, heißt Variablendeklaration;[13] eine Variable aus dem Definitionsbereich der Variablendeklaration heißt deklariert. Bei der Interpretation kann diese im Skopus (Wirkungsbereich) des jeweiligen Quantors ersetzt werden durch eine lokale Variante (lokal modifizierte Variablendeklaration)[14]
- Andere Autoren grenzen dagegen die Symbolmengen für die Variablen verschiedener Sorten streng voneinander ab und benutzen jeweils für jede Sorte eine eigene Menge an Variablensymbolen. Die Variablen werden z. B. durch einen Sortenindex gekennzeichnet. Die Zuweisung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} einer Sorte zu einer Variablen ist fest und wird nicht lokal modifiziert.[15]
Eine spezielle Bedeutung kommt – wenn vorhanden – der Sorte der logischen Wahrheitswerte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \{\operatorname{false},\operatorname{true}\}} zu, sie sei hier mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{logical}} bezeichnet. Relationen können entsprechend ihrer charakteristischen Funktion als Prädikate aufgefasst werden.[16] Insbesondere entsprechen nullstellige Relationen logischen Konstanten, so wie nullstellige Funktionen einer Bildsorte den Konstanten dieser Sorte entsprechen.[17]
Bei der rekursiven Definition der Terme wird auf deren Sortigkeit Bezug genommen, um die in der Einleitung angesprochenen syntaktischen Eigenschaften zu erzielen: Falsche Sortenbeziehungen erscheinen als Syntaxfehler.
Ausdrücke in vielsortiger Logik
Ähnlich wie vielsortige Terme werden bei gegebener vielsortiger Signatur die Sorten der Argumente und Bildwerte berücksichtigt. Die rekursive Definition zunächst atomarer und dann allgemeiner Formeln (Ausdrücke) erfolgt nach dieser Maßgabe. Falsche Sortenzuweisungen werden daher als Syntaxfehler ausgewiesen.
Im Fall flexibler Variablendeklaration ist zu beachten, dass im Skopus (Geltungsbereich) der Quantoren lokal modifizierte Variablendeklarationen zum Tragen kommen. Auf diese Weise können in diesem Fall dieselben Variablen für unterschiedliche Sorten genutzt werden. Für den Fall, dass eine Variable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} bereits außerhalb der Quantoren deklariert ist, d. h. wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} bereits im ursprünglichen Definitionsbereich der Deklaration Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu} enthalten ist, wird diese lokal überschrieben.[18]
Termauswertung
Sei gegeben eine Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \boldsymbol S} -Struktur Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A} mit Interpretationsfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal V} der Vorrat an Variablennamen. Im vielsortigen Fall sei zusätzlich gegeben eine Variablendeklaration mittels einer (ggf. nur partiellen) Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu{:}\ \mathcal V \not\to T} .
Sei nun gegeben eine Variablenbelegung (auch Variablenzuweisung[19]) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta} . Im einsortigen Fall ist das eine (eventuell nur partielle) Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta{:}\ \mathcal V \not\to A} , im vielsortigen Fall sei für jede Variable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} das Bild (sofern zugewiesen) ein Element des Wertebereichs der deklarierten Sorte: Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta(x) \in A_{\nu(x)}} .
Durch die Variablenbelegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta} wird den Termen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} ein Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\![t]\!]} zugeordnet wie folgt:[20][21][22]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\![\color{blue}x\color{black}]\!] = \beta(\color{blue}x\color{black})} für Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}x\color{black} \in \mathcal V} ,
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\![\color{blue}f(t_1,\dots t_n)\color{black}]\!] = \alpha(\color{blue}f\color{black}) ([\![\color{blue}t_1\color{black}]\!], \dots [\![\color{blue}t_n\color{black}]\!])} für ein Funktionssymbol Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}f\color{black}} der Stelligkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle n = \sigma(\color{blue}f\color{black})} .
Zeichen und Zeichenketten über dem Gesamtalphabet sind oben zur Verdeutlichung blau hervorgehoben:
- Auf der linken Seite steht die Auswertung eines Terms, also einer Zeichenkette (endliche Folge von Symbolen).
- Auf der rechten Seite wird eine Funktion (Verknüpfung) Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha(f)} angewendet auf ihre Argumente Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\![t_1]\!], [\![t_2]\!], \dots} .
Konstanten lassen sich als nullstellige Funktionen auffassen, explizit ist
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\![c]\!] = \alpha(c)} für Konstanten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle c} .
Die Abbildung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\![\ ]\!]} wird Termauswertung oder Termzuweisung genannt.
Im vielsortigen Fall ergibt die Auswertung eines Terms Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} der (nicht-logischen) Sorte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} ein Objekt (Element) des Wertebereichs Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_s = \alpha(s)} .
Die Termauswertung ist eine mit der Funktionsinterpretation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha|_{\mathcal F}} verträgliche Fortsetzung der Variablenbelegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta} und der Konstanteninterpretation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha|_{\mathcal C}} . Eine Termauswertung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\![\ ]\!]} ist durch zwei Parameter festgelegt:
- die Interpretationsfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} (steht für die Struktur) und
- die Variablenbelegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta}
Unter der Voraussetzung, dass die Wertebereiche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_s} paarweise disjunkt sind, sind die Sorten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s = \nu(x)} der belegten Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} durch ihren Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta(x) \in A_s} eindeutig bestimmt, so dass in diesem Fall die zusätzliche Angabe der Variablendeklaration nicht nötig ist. Man findet daher auch Notationen in der Art Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\![\ ]\!]_{\alpha,\beta}} statt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\![\ ]\!]} .[23]
Gültigkeit von Ausdrücken
So wie sich Terme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} bei gegebener Struktur (ausgedrückt durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} ) und Variablenbelegung (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta} ) auf ihren Wert einer (nichtlogischen) Sorte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} auswerten lassen, lassen sich Ausdrücke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} auf ihren logischen Wert auswerten. Anstelle von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\![\varphi]\!]_{\alpha,\beta}} ist für diese Gültigkeit von Ausdrücken (auch Wahrheitswert oder Formelzuweisung genannt) die Notation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \varphi} üblich. Diese Gültigkeit wird implizit durch die folgenden Regeln definiert:[24][25][26][27]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \color{blue}x\color{black} \Leftrightarrow \beta(\color{blue}x\color{black})} ggf. für logische Variablen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}x\color{black} \in \mathcal V} [28]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \color{blue}t_1 = t_2\color{black} \Leftrightarrow [\![\color{blue}t_1\color{black}]\!]_{\alpha,\beta} \color{red}=\color{black} [\![\color{blue}t_2\color{black}]\!]_{\alpha,\beta}} für Terme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}t_1\color{black},\color{blue}t_2\color{black}} [29]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \color{blue}R(t_1,\dots t_k)\color{black} \Leftrightarrow ([\![\color{blue}t_1\color{black}]\!]_{\alpha,\beta}, \dots [\![\color{blue}t_k\color{black}]\!]_{\alpha,\beta}) \in \alpha(\color{blue}R\color{black})} für ein Relationssymbol Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}R\color{black}} der Stelligkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k = \sigma(\color{blue}R\color{black})} und Terme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}t_1\color{black},\dots\color{blue}t_k\color{black}} , insbesondere
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \color{blue}R\color{black} \Leftrightarrow \epsilon \in \alpha(\color{blue}R\color{black}) \Leftrightarrow \alpha(\color{blue}R\color{black}) \ne \emptyset \Leftrightarrow \alpha(\color{blue}R\color{black})} ggf. für logische Konstanten, d. h. nullstellige Relationen[30]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \color{blue}\neg \varphi\color{black}\ \ \Leftrightarrow\ \ \color{red}\neg\color{black} (\alpha, \beta) \models \color{blue}\varphi\color{black}} für Ausdrücke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \color{blue}\varphi \lor \psi\color{black}\ \ \Leftrightarrow\ \ ((\alpha,\beta) \models \color{blue}\varphi\color{black})\ \;\color{red}\lor\color{black}\ \;((\alpha,\beta) \models \color{blue}\psi\color{black})} für Ausdrücke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}\varphi\color{black},\color{blue}\psi\color{black}}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \color{blue}\varphi \land \psi\color{black}\ \ \Leftrightarrow\ \ ((\alpha,\beta) \models \color{blue}\varphi\color{black})\ \;\color{red}\land\color{black}\ \;((\alpha,\nu) \models \color{blue}\psi\color{black})}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \color{blue}\varphi \to \psi\color{black}\ \ \Leftrightarrow\ \ ((\alpha,\beta) \models \color{blue}\varphi\color{black})\ \;\color{red}\to\color{black}\ \;((\alpha,\beta) \models \color{blue}\psi\color{black})}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \color{blue}\varphi \leftrightarrow \psi\color{black}\ \ \Leftrightarrow\ \ ((\alpha,\beta) \models \color{blue}\varphi\color{black})\ \;\color{red}\leftrightarrow\color{black}\ \;((\alpha,\beta) \models \color{blue}\psi\color{black})}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \color{blue}\forall\;x:s\ \varphi\color{black}\ \ \Leftrightarrow\ \ \color{red}\forall\color{black}\;a \in A_{\color{blue}s\color{black}}\color{red}:\color{black} (\alpha,\beta_{\langle x \mapsto a\rangle}) \models \color{blue}\varphi} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}s\color{black} \in T} eine Sorte, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}x\color{black} \in \mathcal V} ein Variablensymbol und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}\varphi\color{black}} ein Ausdruck ist, in dem die lokale Variable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}x\color{black}} der Sorte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}s\color{black}} vorkommt.[31]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \color{blue}\exists\;x:s\ \varphi\color{black}\ \ \Leftrightarrow\ \ \color{red}\exists\color{black}\;a \in A_{\color{blue}s\color{black}}\color{red}:\color{black} (\alpha,\beta_{\langle x \mapsto a\rangle}) \models \color{blue}\varphi} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}s\color{black}} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}x\color{black}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}\varphi\color{black}} wie zuvor.[31]
Zeichen und Zeichenketten über dem Gesamtalphabet sind oben zur Verdeutlichung blau hervorgehoben, insbesondere gehören dazu die Junktoren und Quantoren auf der linken Seite (Objektsprache). Die rot markierten auf der rechten Seite sind Abkürzungen für die logische Verknüpfungen etc. der gewöhnliche Sprache (Metasprache), mit der der Sachverhalt dargestellt wird, also für „und“, „oder“, „es gibt ein“, „für alle“, „ist gleich“, etc.[26] Zur Unterscheidung von den Quantorsymbolen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}\forall\color{black}\dots,\color{blue}\exists\color{black}\dots} der Objektsprache könnten hier z. B. auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{red}\textstyle\bigwedge\limits_{\color{black}\dots}\color{black}, \color{red}\textstyle\bigvee\limits_{\color{black}\dots}} Verwendung finden.
Der Wahrheitswert von Sätzen (geschlossenen Ausdrücken, d. h. ohne freie Variablen) hängt nicht von der Variablenbelegung ab.[32]
In der Prädikatenlogik zweiter Stufe mit Relationsvariablen kommen noch zwei weitere Regeln hinzu, in vielsortigen Normalfall sind das:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \color{blue}\forall\;X:t\ \varphi\color{black}\ \ \Leftrightarrow\ \ \color{red}\forall\color{black}\;R \sube \textstyle\prod A\circ{\color{blue}t\color{black}}\color{red}:\color{black} (\alpha,\beta_{\langle X \mapsto R\rangle}) \models \color{blue}\varphi} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}t\color{black} \in T^*} der Argumenttyp ist, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}X\color{black} \in \mathcal R} ein Relationsvariablensymbol und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}\varphi\color{black}} ein Ausdruck, in dem die lokale Relationsvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}X\color{black}} vom Typ Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}t} vorkommt.[33]
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\alpha,\beta) \models \color{blue}\exists\;X:t\ \varphi\color{black}\ \ \Leftrightarrow\ \ \color{red}\exists\color{black}\;R \sube \textstyle\prod A\circ{\color{blue}t\color{black}}\color{red}:\color{black} (\alpha,\beta_{\langle X \mapsto R\rangle}) \models \color{blue}\varphi} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}t\color{black} \in T^*} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}X\color{black}} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}\varphi\color{black}} wie zuvor.[33]
Im einsortigen Fall kann das kartesische Produkt der Trägermengen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \textstyle\prod A\circ{\color{blue}t\color{black}} = A_{\color{blue}t_1\color{black}}\times\dots A_{\color{blue}t_k\color{black}}} zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A^k} mit Stelligkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} vereinfacht werden. Meist werden Relationsvariablen mit fester Stelligkeit benutzt (diese gerne als Index notiert), andernfalls muss die Stelligkeit deklariert werden: Für die Stelligkeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k \in\N_0} wird dann eine symbolische Darstellung aus weiteren Zeichen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}i} benötigt mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha(\color{blue}i\color{black}) = k \in \N_0} ,[34] der Aufwand ist daher gleich oder etwa gleich wie im mehrsortigen Fall.
Einzelnachweise und Anmerkungen
- ↑ Siehe Abschnitt #Terme in vielsortiger Logik.
- ↑ Gemeint ist hier eine abstrakte Boolesche Algebra als Wertebereich. Zum Spezialfall der Aussagenalgebra „logische Terme versus Ausdrücke“ siehe die Abschnitte: #Ausdrücke und #Ausdrücke in vielsortiger Logik.
- ↑ W. Vogler (2007/2008) S. 3
- ↑ Kruse/Borgelt (2008) S. 4
- ↑ Dazu müssen diese Terme zunächst in eine lineare Form (d. h. Zeichenketten) übergeführt werden. Bei den Quantoren entspricht dies dem Ersetzen der Schreibweise mit den Symbolen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \bigwedge_\dots, \bigvee_\dots} (ähnlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_\dots, \prod_\dots} ) durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall\dots, \exist\dots} . Weiteres s. u.: Ausdrücke als quasi ‚logische Terme‘.
- ↑ Vgl. R. Letz (2004) S. 10
- ↑ Kleine Büning (2015), S. 8–15
- ↑ oder Formel
- ↑ Die Ausdrücke gemäß Punkt 1 und 2 nennt man atomar.
- ↑ W. Vogler (2007/2008) S. 5 f
- ↑ Eine Variable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in \mathcal V} heißt gebunden in einem Ausdruck Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi} , wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} unmittelbar auf den Quantor (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \exist, \forall,\dots} ) folgt, ansonsten wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} als freie Variable bezeichnet. Variablen können im gleichen Ausdruck sowohl frei als auch (lokal im Gültigkeitsbereich eines Quantors) gebunden vorkommen. Ein Ausdruck ohne freie Variablen heißt geschlossen oder ein Satz. Siehe R. Letz (2004) S. 10
- ↑ In der Prädikatenlogik zweiter Stufe besteht auch im einsortigen Fall bezüglich der Stelligkeit der Relationsvariablen ebenfalls diese beiden Möglichkeiten, hier findet man meist die zweite Variante vor.
- ↑ Stefan Brass (2005) S. 54
- ↑ Stefan Brass (2005) S. 56
- ↑ A. Oberschelp (1990) Seite 9ff
- ↑ Siehe Relation (Mathematik) #Relationen und Funktionen
- ↑ Erich Grädel (2009) S. 1
- ↑ Siehe Stefan Brass (2005) S. 56 und S. 66–68; sowie Ramharter, Eder (2015/16) S. 17.
- ↑ C. Lutz (2010) S. 8
- ↑ Kruse, Borgelt (2008) S. 9
- ↑ R. Letz (2004) S. 7. Der Autor benutzt die Notation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle u} für die Objekte (Elemente der Wertebereiche der Sorten), Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \iota} für die Interpretationsfunktion Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \alpha} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A} für die Variablenbelegung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta} . Anstelle von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta_{\langle x \mapsto a\rangle}} wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal A_x^u} notiert, anstelle von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle [\![\ ]\!]_{\alpha,\beta}} für die Termzuweisung heißt es Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \iota^{\mathcal A}} .
- ↑ Stefan Brass (2005) S. 83
- ↑ In der ordnungssortierten Logik (englisch: order-sorted logic) sind die den Sorten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s \in T} zugeordneten Wertebereiche Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_s} nicht notwendig disjunkt. Stattdessen ist die Menge der Sorten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle T} mit einer partiellen Ordnung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \preceq} versehen, so dass für alle Sorten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s_1, s_2} gilt: Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s_1 \preceq s_2} , dann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A_{s_1} \sube A_{s_2}} . Jeder Konstanten, Variablen und schließlich jedem Term Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t} der Sorte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s} wird eine Sortenmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle <s> = \{r\in T|s \preceq r\}} (Oberhalbmenge von s) zugeordnet, die alle Sorten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} umfasst mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle s \preceq r} . Terme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle t_1,t_2} können dann kombiniert werden, wenn die Schnittmenge der Wertebereiche ihrer Sorten der Wertebereich einer definierten Sorte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} ist , also insbesondere nicht leer ist. Man schreibt dann Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r = s_1 \sqcap s_2} (oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r = s_1 \cap s_2} ). Näheres siehe A. Oberschelp (1989) Seite 11ff. Diese Art von Logik ist Grundlage der Vererbung von Klassen (Klassenhierarchie) in der objektorientierten Programmierung.
- ↑ Kruse, Borgelt (2008) S. 9
- ↑ R. Letz (2004) S. 8
- ↑ a b Stefan Brass (2005) S. 84–88. Der Autor benutzt Wahrheitstabellen für die hier farblich gekennzeichneten logischen Verknüpfungen.
- ↑ Vergleiche Gültigkeit in der Aussagenlogik
- ↑ mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu(\color{blue}x\color{black}) = \operatorname{logical}}
- ↑ Gerne wird zur Unterscheidung als Gleichheitssymbol in der Objektsprache Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}\equiv} statt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}=} benutzt.
- ↑ mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \epsilon = \emptyset} , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \emptyset = \operatorname{false}, \{\emptyset\} = \operatorname{true}}
- ↑ a b Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta_{\langle x \mapsto a\rangle}} ist die lokal modifizierte Variablenbelegung (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} -Variante), entsprechend der lokal modifizierten Variablendeklaration Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_{\langle x \mapsto s\rangle}} , wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a \in A_s = \alpha(s) = \nu_{\langle x \mapsto s\rangle}(x)} .
- ↑ R. Letz (2004) S. 10
- ↑ a b Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \beta_{\langle X \mapsto R\rangle}} ist die lokal modifizierte Relationsvariablenbelegung (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} -Variante), entsprechend der lokal modifizierten Relationsvariablendeklaration Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \nu_{\langle X \mapsto \color{blue}t\color{black}\rangle}} , wegen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R \sube \textstyle\prod A\circ{\color{blue}t\color{black}} = \textstyle\prod A\circ\nu_{\langle X \mapsto t\rangle}(X)} .
- ↑ Zum Beispiel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}i\color{black} = \underbrace{\color{blue}||\color{black}\dots\color{blue}|\color{black}}_{k\text{-mal}}} (Strichzählung) oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}i\color{black} = \underbrace{\color{blue}SS\color{black}\dots\color{blue}S\color{black}}_{k\text{-mal}}\color{blue}O\color{black}} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k = |\color{blue}i\color{black}|} = Länge von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}i\color{black}} bzw. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}O} = Zeichen für Null, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \color{blue}S} = Zeichen für Inkrement (‚+1‘), bzw. komplexer eine Binär- oder Dezimaldarstellung.
Literatur
- Erich Grädel: Mathematische Logik. Mathematische Grundlagen der Informatik, SS 2009. RWTH, Aachen, S. 129 (cs.uni-dortmund.de [PDF]).
- Stefan Brass: Mathematische Logik mit Datenbank-Anwendungen. Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik, Halle 2005, S. 176 (informatik.uni-halle.de [PDF]).
- W. Vogler: Logik für Informatiker. WS 2007/2008. Univ. Augsburg, Institut für Informatik, Augsburg, S. 49 (informatik.uni-augsburg.de [PDF]).
- R. Kruse, C. Borgelt: Grundbegriffe der Prädikatenlogik. Computational Intelligence. Otto-von-Guericke Universität, Magdeburg 2008, S. 14 (cs.ovgu.de [PDF]).
- Reinhold Letz: Prädikatenlogik. WS 2004/2005. Technische Universität München, Fakultät für Informatik, Lehrstuhl Informatik IV, München, S. 47 (ifi.lmu.de [PDF]).
- Carsten Lutz: Logik. Vorlesung im Wintersemester 2010. Teil 4: Prädikatenlogik zweiter Stufe. Universität Bremen, AG Theorie der künstlichen Intelligenz, 2010, S. 65 (informatik.uni-bremen.de [PDF]).
- Esther Ramharter, Günther Eder: Prädikatenlogik zweiter Stufe. WS 2015/2016. SE Modallogik und andere philosophisch relevante Logiken. Universität Wien, S. 22 (univie.ac.at [PDF]).
- Klaus Grue: Object Oriented Mathematics. Universität Kopenhagen, Department of Computer Science (Datalogisk Institut), 1995, S. 21 (diku.dk [PDF] Generelle Maplet-Notation, ebenfalls eine Notation für lokal modifizierte Variablendeklaration und -belegung).
- Arnold Oberschelp: Order Sorted Predicate Logic. Hrsg.: Karl Hans Bläsius, Ulrich Hedtstück, Claus-Rainer Rollinger. Lecture Notes in Computer Science (LNCS), Band 418: Sorts and Types in Artificial Intelligence, Workshop, Eringerfeld, FRG, April 24–26, 1989 Proceedings. Springer-Verlag, Berlin Heidelberg 1990, ISBN 3-540-52337-5, S. 307, doi:10.1007/3-540-52337-6.
- H. Kleine Büning: Sorten und Terme. Wintersemester 2015. Mod. 05 Teil 1. Universität Paderborn, 2015, S. 15.
Weblinks
- Termumformungen für verschiedene Schularten und Klassenstufen, z. T. mit didaktischen Hinweisen. Landesbildungsserver Baden-Württemberg