Substitution (Mathematik)

aus Wikipedia, der freien Enzyklopädie

Unter Substitution versteht man in der Mathematik allgemein das Ersetzen eines Terms durch einen anderen mit dem Ziel der Überführung des Ausgangsterms in eine einfach lösbare Standardform. Die Substitution wird unter anderem verwendet, um biquadratische Gleichungen zu lösen oder um Integrale mittels Substitution zu bestimmen.

Beispiel

Funktionsgraphen vor und nach der Substitution

Folgendes Beispiel nutzt die Substitution, um die Lösungsmenge einer gegebenen biquadratischen Gleichung bzw. die Nullstellen einer ganzrationalen Funktion bzw. eines Polynoms 4. Grades zu bestimmen.[1]

Die Gleichung

lässt sich durch die Substitution in

überführen. Diese quadratische Gleichung lässt sich nun mit Standardverfahren wie zum Beispiel mit der p-q-Formel lösen. Man erhält als Lösungen und . Durch Rücksubstitution erhält man für die Gleichungen

mit den Lösungen und sowie

mit den komplexen Lösungen und . Die Ausgangsgleichung hat somit als Lösungsmenge in bzw. in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Complex} .

Siehe auch

Einzelnachweise

  1. Jan Peter Gehrk: Mathematik im Studium: Brückenkurs für Wirtschafts- und Naturwissenschaften. R. Oldenbourg Verlag, München 2010, ISBN 978-3-486-59910-7, S. 116–117.