Banachscher Abbildungssatz

aus Wikipedia, der freien Enzyklopädie

Der Banachsche Abbildungssatz ist ein nach dem polnischen Mathematiker Stefan Banach benannter mathematischer Lehrsatz aus dem Gebiet der Mengenlehre.[1] Der Satz behandelt eine grundlegende Eigenschaft von Abbildungen. Er ist eng mit dem Cantor-Bernstein-Schröder-Theorem verknüpft.

Formulierung des Satzes

Der Satz lässt sich wie folgt formulieren:[2]

Gegeben seien Mengen     und    und dazu Abbildungen
    und   .
Dabei sei     injektiv.
Dann existieren Mengen     mit
   und   
sowie
   und   
derart, dass gilt:
   und   

Verschärfung

Es lässt sich mit Hilfe des Fixpunktsatzes von Tarski und Knaster zeigen,[3] dass die Behauptung des Satzes immer noch gilt, wenn die Injektivitätsbedingung für die Abbildung     fallen gelassen wird.

Der Banachsche Abbildungssatz (verschärfte Version) lautet demnach folgendermaßen:

Gegeben seien Mengen     und    und dazu Abbildungen
  und    .
Dann existieren Mengen     mit
   und   
sowie
   und   
derart, dass gilt:
   und   

Beweis (Verschärfung)

Betrachte die Abbildung mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F(A) := M \setminus (\psi( N \setminus \phi(A))) } .

Da Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F } monoton ist, besitzt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F } nach dem Fixpunktsatz von Tarski und Knaster einen Fixpunkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_1 } . Es gilt also Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_1 = M \setminus ( \psi( N \setminus \phi(M_1))) } beziehungsweise äquivalent hierzu

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M \setminus M_1 = \psi(N \setminus \phi(M_1)) } .

Wir setzen nun Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle M_2 := M\setminus M_1 } , Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_1 := \phi(M_1) } und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N_2 := N \setminus N_1 } .

Hiermit erhalten wir wie gewünscht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\phi}(M_1) = N_1} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle {\psi}(N_2) = \psi(N\setminus \phi(M_1)) = M \setminus M_1 = M_2} .

Folgerung

Aus dem Banachschen Abbildungssatz folgt unmittelbar das Cantor-Bernstein-Schröder-Theorem.[4][5][6]

Literatur

Artikel und Originalarbeiten

  • Stefan Banach: Un théorème sur les transformations biunivoques. In: Fundamenta Mathematicae. 6, 1924, S. 236–239.
  • Alfred Tarski: A lattice-theoretical fixpoint theorem and its applications. In: Pacific Journal of Mathematics. 5, 1955, S. 285–309.
  • Bronislaw Knaster: Un théorème sur les fonctions d’ensembles. In: Ann. Soc. Polon. Math.. 6, 1928, S. 133–134.

Monographien

  • Garrett Birkhoff: Lattice Theory. 3. Auflage. American Mathematical Society, Providence, Rhode Island 1979.
  • Heinz Lüneburg: Kombinatorik. Birkhäuser Verlag, Basel u. a. 1971, ISBN 3-7643-0548-7.
  • Heinz Lüneburg: Tools and Fundamental Constructions of Combinatorial Mathematics. BI Wissenschaftsverlag, Mannheim u. a. 1989, ISBN 3-411-03194-8.

Einzelnachweise

  1. Stefan Banach: Un théorème sur les transformations biunivoques. In: Fundamenta Mathematicae. Band 6, 1924, S. 236–239.
  2. Heinz Lüneburg: Kombinatorik. Birkhäuser Verlag, Basel u. a. 1971, ISBN 3-7643-0548-7, S. 65.
  3. Heinz Lüneburg: Tools and Fundamental Constructions of Combinatorial Mathematics. BI Wissenschaftsverlag, Mannheim u. a. 1989, ISBN 3-411-03194-8, S. 348–349.
  4. Stefan Banach: Un théorème sur les transformations biunivoques. In: Fundamenta Mathematicae. Band 6, 1924, Einleitung, S. 236.
  5. Heinz Lüneburg: Kombinatorik. Birkhäuser Verlag, Basel u. a. 1971, ISBN 3-7643-0548-7, S. 66.
  6. Heinz Lüneburg: Tools and Fundamental Constructions of Combinatorial Mathematics. BI Wissenschaftsverlag, Mannheim u. a. 1989, ISBN 3-411-03194-8, S. 349.