ϕ = lim n → ∞ n ! π e 4 ( 1 1 1 0 ) n + d n d z n ( z 1 − z − z 2 ) ( 0 ) 2 1 − n ∏ i = 1 n i 2 ⋅ ∑ i = 0 n ∏ k = 1 i k − 1 δ 1 ( i m o d 2 ) 5 i − 1 ( n − i ) ! {\displaystyle \phi =\lim \limits _{n\to \infty }{\frac {n!\,\pi _{e_{4}}\left({1 \atop 1}\,{1 \atop 0}\right)^{n}+{\frac {\mathrm {d} ^{n}}{\mathrm {d} z^{n}}}\left({\frac {z}{1-z-z^{2}}}\right){\big (}0{\big )}}{2^{{}^{1-n}}\,\prod \limits _{i=1}^{n}i^{2}\cdot \sum \limits _{i=0}^{n}\,\prod \limits _{k=1}^{i}k^{-1}\,\delta _{1(i\,\mathrm {mod} \,2)}\,{\frac {{\sqrt {5}}^{i-1}}{(n-i)!}}}}}