0 = x 3 − k 2 x a = x 0 = 0 b = x 1 ; b > 0 0 = x ( x 2 − k 2 ) 0 = x 2 − k 2 x 0 2 = k 2 | b | = | x 1 | = | k | 8 2 = ∫ 0 k f ( x ) d x 4 = | ∫ 0 k ( x 3 − k 2 x ) d x | = | [ 1 4 x 4 − k 2 2 x 2 ] 0 k | = | 1 4 k 4 − k 2 2 k 2 | = 1 4 k 4 k = 16 4 = 16 = 2 {\displaystyle {\begin{aligned}0&=x^{3}-k^{2}x\\a&=x_{0}=0\\b&=x_{1};\ b>0\\0&=x\left(x^{2}-k^{2}\right)\\0&=x^{2}-k^{2}\\{x_{0}}^{2}&=k^{2}\\\left|b\right|&=\left|x_{1}\right|=\left|k\right|\\{\frac {8}{2}}&=\int \limits _{0}^{k}\mathrm {f} (x)\,\mathrm {d} x\\4&=\left|\int \limits _{0}^{k}(x^{3}-k^{2}x)\,\mathrm {d} x\right|\\&=\left|\left[{\frac {1}{4}}x^{4}-{\frac {k^{2}}{2}}x^{2}\right]_{0}^{k}\right|\\&=\left|{\frac {1}{4}}k^{4}-{\frac {k^{2}}{2}}k^{2}\right|\\&={\frac {1}{4}}k^{4}\\k&={\sqrt[{4}]{16}}={\sqrt {\sqrt {16}}}=2\end{aligned}}}
f ( x ) = − x 2 + 4 g ( x ) = − x + 2 A = ∫ − 1 2 f ( x ) d x − ∫ − 1 2 g ( x ) d x = ∫ − 1 2 ( − x 2 + 4 ) d x − ∫ − 1 2 ( − x + 2 ) d x = [ − 1 3 x 3 + 4 x ] − 1 2 − [ − 1 2 x 2 + 2 x ] − 1 2 = ( ( − 1 3 ( 2 ) 3 − 4 ( 2 ) ) − ( 1 3 ( − 1 ) 3 + 4 ( − 1 ) ) ) − ( ( − 1 2 ( 2 ) 2 + 2 ( 2 ) ) − ( − 1 2 ( − 1 ) 2 + 2 ( − 1 ) ) ) A = 9 2 {\displaystyle {\begin{aligned}\mathrm {f} (x)&=-x^{2}+4\\\mathrm {g} (x)&=-x+2\\A&=\int \limits _{-1}^{2}\mathrm {f} (x)\,\mathrm {d} x-\int \limits _{-1}^{2}\mathrm {g} (x)\,\mathrm {d} x\\&=\int \limits _{-1}^{2}(-x^{2}+4)\mathrm {d} x-\int \limits _{-1}^{2}(-x+2)\mathrm {d} x\\&=\left[-{\frac {1}{3}}x^{3}+4x\right]_{-1}^{2}-\left[-{\frac {1}{2}}x^{2}+2x\right]_{-1}^{2}\\&={\Bigl (}{\bigl (}-{\frac {1}{3}}(2)^{3}-4(2){\bigr )}-{\bigl (}{\frac {1}{3}}(-1)^{3}+4(-1){\bigr )}{\Bigr )}-{\Bigl (}{\bigl (}-{\frac {1}{2}}(2)^{2}+2(2){\bigr )}-{\bigl (}-{\frac {1}{2}}(-1)^{2}+2(-1){\bigr )}{\Bigr )}\\A&={\frac {9}{2}}\end{aligned}}}
f ( x ) = x g ( x ) = − 3 4 x + 3 A = ∫ 0 s f ( x ) d x + ∫ s 4 g ( x ) d x f ( x ) = g ( x ) Y 1 = − x 2 + 4 Y 2 = − 3 4 x + 3 → G T R → [ G R A P H ] → [ I S C T ] s = 2,078 9 A = ∫ 0 s x d x + ∫ s 4 ( − 3 4 x + 3 ) d x = [ 2 3 x 3 2 ] 0 s + [ − 3 8 2 + 3 x ] s 4 = ( 2 3 s 3 2 ) + ( − 3 8 4 2 + 3 ( 4 ) ) − ( − 3 8 s 2 + 3 s ) = 3,382 3 {\displaystyle {\begin{aligned}\mathrm {f} (x)&={\sqrt {x}}\\\mathrm {g} (x)&=-{\frac {3}{4}}x+3\\A&=\int \limits _{0}^{s}\mathrm {f} (x)\,\mathrm {d} x+\int \limits _{s}^{4}\mathrm {g} (x)\,\mathrm {d} x\\\mathrm {f} (x)&=\mathrm {g} (x)\\\mathrm {Y} 1&=-x^{2}+4\\\mathrm {Y} 2&=-{\frac {3}{4}}x+3\\&\to \mathrm {GTR} \to [\mathrm {GRAPH} ]\to [\mathrm {ISCT} ]\\s&=2{,}0789\\A&=\int \limits _{0}^{s}{\sqrt {x}}\,\mathrm {d} x+\int \limits _{s}^{4}(-{\frac {3}{4}}x+3)\,\mathrm {d} x\\&=\left[{\frac {2}{3}}x{^{\frac {3}{2}}}\right]_{0}^{s}+\left[-{\frac {3}{8}}^{2}+3x\right]_{s}^{4}\\&=\left({\frac {2}{3}}s^{\frac {3}{2}}\right)+\left(-{\frac {3}{8}}4^{2}+3(4)\right)-\left(-{\frac {3}{8}}s^{2}+3s\right)\\&=3{,}3823\end{aligned}}}
Δ E = ∫ 0 2 4 ( − 5 e − 0 , 1 t ) d t = − 45 , 46 W h {\displaystyle {\begin{aligned}\Delta E&=\int \limits _{0}^{2}4(-5e^{-0{,}1t})\,\mathrm {d} t\\&=-45{,}46\,\mathrm {Wh} \end{aligned}}}
f ( x ) = e 0 , 1 x + 6 g ( x ) = e 0 , 1 x + 6 , 5 F a s s u n g s v e r m o ¨ g e n V F a s s = π ∫ 0 25 f ( x ) 2 d x V F a s s = π ∫ 0 25 ( e 0 , 1 x + 6 ) 2 d x V F a s s = 9358 , 7 c m 3 = 9 , 4 l V G = π ∫ 0 25 , 5 ( e 0 , 1 x + 6 , 5 d x V G = 10767 , 5 c m 3 = 11 l V K = V G − V F V K = 1408 , 8 c m 3 {\displaystyle {\begin{aligned}\mathrm {f} (x)&=e^{0{,}1x}+6\\\mathrm {g} (x)&=e^{0{,}1x}+6{,}5\\&\mathrm {Fassungsverm{\ddot {o}}gen} \\V_{Fass}&=\pi \int \limits _{0}^{25}\mathrm {f} (x)^{2}\,\mathrm {d} x\\V_{Fass}&=\pi \int \limits _{0}^{25}(e^{0{,}1x}+6)^{2}\,\mathrm {d} x\\V_{Fass}&=9358{,}7\,\mathrm {cm} ^{3}=9{,}4\,\mathrm {l} \\V_{G}&=\pi \int \limits _{0}^{25{,}5}(e^{0,1x}+6{,}5\,\mathrm {d} x\\V_{G}&=10767{,}5\,\mathrm {cm} ^{3}=11\,\mathrm {l} \\V_{K}&=V_{G}-V_{F}\\V_{K}&=1408{,}8\,\mathrm {cm} ^{3}\end{aligned}}}
P 1 ( 1 , 0 | 0 , 1 ) P 2 ( 1 , 5 | 0 , 2 ) P 3 ( 2 , 5 | 0 , 5 ) P 4 ( 4 , 0 | 0 , 9 ) P 5 ( 5 , 0 | 1 , 0 ) [ G T R ] → [ S T A T ] → [ R E G : x 3 ] f ( x ) = − 0,015 x 3 + 0,109 x 2 + 0,052 x − 0,071 {\displaystyle {\begin{aligned}\mathrm {P} _{1}&(1{,}0\vert 0{,}1)\\\mathrm {P} _{2}&(1{,}5\vert 0{,}2)\\\mathrm {P} _{3}&(2{,}5\vert 0{,}5)\\\mathrm {P} _{4}&(4{,}0\vert 0{,}9)\\\mathrm {P} _{5}&(5{,}0\vert 1{,}0)\\&[\mathrm {GTR} ]\to [\mathrm {STAT} ]\to [\mathrm {REG} {\mathopen {:}}\,x^{3}]\\\mathrm {f} (x)&=-0{,}015x^{3}+0{,}109x^{2}+0{,}052x-0{,}071\end{aligned}}}
s 2 = ∫ 0 2 f ( x ) d x = 0,190 5 k m s 5 = ∫ 0 5 f ( x ) d x = 2,440 5 k m s 6 = s 5 + 1 = 3,440 5 k m {\displaystyle {\begin{aligned}s_{2}&=\int \limits _{0}^{2}\mathrm {f} (x)\,\mathrm {d} x&=0{,}1905\mathrm {km} \\s_{5}&=\int \limits _{0}^{5}\mathrm {f} (x)\,\mathrm {d} x&=2{,}4405\mathrm {km} \\s_{6}&=s_{5}+1&=3{,}4405\mathrm {km} \end{aligned}}}
D e r R o t a t i o n s k o ¨ r p e r h a t e i n e r a ¨ u m l i c h e P a r a b e l f o r m , w e n n d i e u n t e r e I n t e r v a l l − g r e n z e g r o ¨ s s e r o d e r g l e i c h 1 i s t . I m I n t e r v a l l 0 ≤ x < 1 i s t d i e F u n k t i o n j e d o c h n i c h t d e f i n i e r t , i m g e g e b e n e n I n t e r v a l l e x i s t i e r t a l s o k e i n K o ¨ r p e r . V = π ∫ 0 2 s q r t x − 1 2 d x = π ∫ 0 2 ( x − 1 ) d x = π [ 1 2 x 2 − x ] 0 2 = π ( 4 2 − 2 ) V = 0 F u ¨ r d a s I n t e r v a l l I = [ 1 ; 2 ] : V = π ∫ 1 2 ( x − 1 ) d x = π [ 1 2 x 2 − x ] 1 2 d x = π ( ( 4 2 − 2 ) − ( 1 2 − 1 ) ) V = π 2 {\displaystyle {\begin{aligned}&\mathrm {Der\ Rotationsk{\ddot {o}}rper\ hat\ eine\ r{\ddot {a}}umliche\ Parabelform,wenn\ die\ untere\ Intervall-} \\&\mathrm {grenze\ gr{\ddot {o}}sser\ oder\ gleich\ 1\ ist.\ Im\ Intervall\ 0\ \leq \ x\ <\ 1\ ist\ die\ Funktion\ jedoch} \\&\mathrm {nicht\ definiert,im\ gegebenen\ Intervall\ existiert\ also\ {\color {red}kein\ K{\ddot {o}}rper}.} \\V&=\pi \int \limits _{0}^{2}sqrt{x-1}^{2}\,\mathrm {d} x\\&=\pi \int \limits _{0}^{2}(x-1)\,\mathrm {d} x\\&=\pi \left[{\frac {1}{2}}x^{2}-x\right]_{0}^{2}\\&=\pi \left({\frac {4}{2}}-2\right)\\V&=0\\&\mathrm {F{\ddot {u}}r\ das\ Intervall\ I=[1;2]:} \\V&=\pi \int \limits _{1}^{2}(x-1)\,\mathrm {d} x\\&=\pi \left[{\frac {1}{2}}x^{2}-x\right]_{1}^{2}\,\mathrm {d} x\\&=\pi {\Biggl (}\left({\frac {4}{2}}-2\right)-\left({\frac {1}{2}}-1\right){\Biggr )}\\V&={\frac {\pi }{2}}\end{aligned}}}