ln ( a b ) = ln a + ln b {\displaystyle \ln(ab)=\ln a+\ln b}
ln ( a b ) = b ⋅ ln a {\displaystyle \ln(a^{b})=b\cdot \ln a}
ln e = 1 {\displaystyle \ln e=1}
e ( ln a ) = a {\displaystyle e^{(}\ln a)=a}
( f − 1 ) ′ ( x ) = 1 / ( f ′ ( f − 1 ( x ) ) ) {\displaystyle (f^{-}1)'(x)=1/(f'(f^{-}1(x)))}
( l n x ) ′ = 1 / x {\displaystyle (lnx)'=1/x}
( f ( x ) ∗ g ( x ) ) ′ = f ( x ) ∗ g ′ ( x ) + f ′ ( x ) ∗ g ( x ) {\displaystyle (f(x)*g(x))'=f(x)*g'(x)+f'(x)*g(x)}
( f ( g ( x ) ) ) ′ = f ′ ( g ( x ) ) ∗ g ′ ( x ) {\displaystyle (f(g(x)))'=f'(g(x))*g'(x)}
( l n f ( x ) ) ′ = f ′ ( x ) / f ( x ) {\displaystyle (lnf(x))'=f'(x)/f(x)}