Benutzer:Max Synchron/Synchronmaschine Test
Kühlung
Die Ständerwicklung und die Läuferwicklung von Synchronmaschinen erwärmen sich im Betrieb durch die auftretenden Ströme. Zu diesen sogenannten Kupferverlusten addieren sich die Eisenverluste des Ständerblechpakets, die beim Ummagnetisieren entstehen. Während die Kupferverluste von der Belastung abhängen, sind die Eisenverluste nahezu lastunabhängig.
Die Verlustwärme wird je nach Maschinenleistung und damit einhergehender Bauform durch unterschiedliche Kühlmethoden abgeführt. Es gibt offene und geschlossene, eigen- und fremdbelüftete, direkte und indirekte Kühlmethoden. Verschiedene Kühlmedien wie Luft, Wasserstoff oder Wasser können dabei zur Anwendung kommen.
Indirekte Kühlungsarten
Luftgekühlte Synchrongeneratoren
Im unteren Leistungsbereich (bis ca. 300 MWel bei cos phi 0,8) geschieht die Kühlung eigenbelüftet durch die beidseitig auf dem Läufer angebrachten Lüfterräder. Die Fremdbelüftung durch externe Lüfter kommt grundsätzlich nur in Spezialfällen vor. Die von der Umgebung angesaugte Luft nimmt beim Durchströmen die Verlustwärme (ca. 3 MW bei einem Wirkungsgrad von ca. 99 % und 300 MW Generatorleistung) auf. Man spricht auch von durchzugsbelüfteter Maschine. Passive Kühlung durch außenliegende Kühlrippen ist bei kleineren Maschinen standardmäßig vorgesehen.
Bei Freiluftaufstellungen findet man öfters die durchzugsbelüftete Ausführung mit einem Luftfilter in der Ansaugung. Die Abführung der Verlustwärme bei Innenaufstellung erfolgt mittels im Generatorgehäuse eingebauten, redundanten Luft/Wasser-Wärmetauschern. Die Verlegung von Kühlwasserrohren im Kraftwerk zum Außenkühl-System ist deutlich einfacher gegenüber notwendigen nicht handbaren großen Luftkanälen.
Wasserstoffgekühlte Synchrongeneratoren
Im Leistungsbereich von ca. 300 MWel bis 500 MWel findet man die wasserstoffgekühlten Generatoren. Die spezifische Wärmekapazität von Wasserstoff ist deutlich höher gegenüber Luft, so dass bei höherer Leistungsanforderung die Generatorabmessungen klein gehalten werden können. Man spricht daher von Kühlgas anstatt Kühlluft. Diese Kühlung bedeutet jedoch einen deutlich höheren technischen Aufwand. Das Ständergehäuse ist druckfest (ca. 4 bar) auszuführen und der Explosionsschutz muss angewendet werden. Spezielle Hilfssysteme für z.B. Dichtöl, Wasserstoff, etc. sind nötig. Die Läufer-Lüfterräder lassen den Wasserstoff im Innern zirkulieren (Primärkreislauf) und die Verlustwärme wird durch im Ständergehäuse eingebaute Wasserstoff/Wasser-Wärmetauscher zum externen Kühlsystem geführt.
Direkte Kühlungsarten
Wassergekühlte Synchrongeneratoren
Diese Kühlung ist bei den Höchstleistungsgeneratoren (größer 500 MWel) zu finden und kann (???) aus einer Kombination aus Wasser- und Wasserstoffkühlung bestehen. Der Generator ist auch hier wasserstoffgekühlt, jedoch erfolgt vornehmlich nur eine Kühlung der Läuferwicklung. Die Ständerwicklung wird direkt mit demineralisiertem Kühlwasser (Deionat) gekühlt. Eine spezielle Ständerwicklung wird mit Hohl-Roebelstäben und innerer Edelstahl-Auskleidung ausgeführt.
Es gibt auch Ausführungen mit wassergekühlter Läuferwicklung, die wegen ihrer Komplexität nicht weiter genutzt wurde.
Überdruck-luftgekühlte Synchrongeneratoren
(direkte Kühlung – Kombination mit Wasser-Kühlung)
Zur Reduzierung der hohen technischen Anforderung und damit verbundenen Kostenersparnis bei wasserstoffgekühlten Generatoren wurde durch Siemens Energy eine weitere Kühlvariante entwickelt. Die Ständerwicklung wird wie bei den Höchst-Leistungsgeneratoren ausgeführt, also direkt gekühlt.
Der Generatorinnenraum wird je nach Leistungsabgabe mit einem regelbaren Luftüberdruck (bis zu 1 bar) betrieben. Durch redundante Luft/Wasser-Wärmetauscher wird die Verlustwärme abgeführt.
In der Vergangenheit wurden auch Prototypen mit supraleitender Erregerwicklung getestet, um die Verluste zu verringern und damit Wicklungskupfer einzusparen.