Benutzer:Phoenixsect/Aktive Materie

aus Wikipedia, der freien Enzyklopädie
Dieser Artikel (Aktive Materie) ist im Entstehen begriffen und noch nicht Bestandteil der freien Enzyklopädie Wikipedia.
Wenn du dies liest:
  • Der Text kann teilweise in einer Fremdsprache verfasst, unvollständig sein oder noch ungeprüfte Aussagen enthalten.
  • Wenn du Fragen zum Thema hast, nimm am besten Kontakt mit dem Autor Phoenixsect auf.
Wenn du diesen Artikel überarbeitest:
  • Bitte denke daran, die Angaben im Artikel durch geeignete Quellen zu belegen und zu prüfen, ob er auch anderweitig den Richtlinien der Wikipedia entspricht (siehe Wikipedia:Artikel).
  • Nach erfolgter Übersetzung kannst du diese Vorlage entfernen und den Artikel in den Artikelnamensraum verschieben. Die entstehende Weiterleitung kannst du schnelllöschen lassen.
  • Importe inaktiver Accounts, die länger als drei Monate völlig unbearbeitet sind, werden gelöscht.
A flock of starlings acting as a swarm

Active matter is composed of large numbers of active "agents", each of which consumes energy in order to move or to exert mechanical forces.[1][2] Such systems are intrinsically out of thermal equilibrium. Unlike thermal systems relaxing towards equilibrium and systems with boundary conditions imposing steady currents, active matter systems break time reversal symmetry because energy is being continually dissipated by the individual constituents.[3][4] Most examples of active matter are biological in origin and span all the scales of the living, from bacteria and self-organising bio-polymers such as microtubules and actin (both of which are part of the cytoskeleton of living cells), to schools of fish and flocks of birds. However, a great deal of current experimental work is devoted to synthetic systems such as artificial self-propelled particles.[5][6] Active matter is a relatively new material classification in soft matter: the most extensively studied model, the Vicsek model, dates from 1995.[7]

Research in active matter combines analytical techniques, numerical simulations and experiments. Notable analytical approaches include hydrodynamics,[8] kinetic theory, and non-equilibrium statistical physics. Numerical studies mainly involve self-propelled-particles models,[9][10] making use of agent-based models such as molecular dynamics algorithms as well as computational studies of hydrodynamic equations of active fluids.[8] Experiments on biological systems extend over a wide range of scales, including animal groups (e.g., bird flocks,[11] mammalian herds, fish schools and insect swarms[12]), bacterial colonies, cellular tissues (e.g. epithelial tissue layers,[13] cancer growth and embryogenesis), cytoskeleton components (e.g., in vitro motility assays, actin-myosin networks and molecular-motor driven filaments[14]). Experiments on synthetic systems include self-propelled colloids (e.g., phoretically propelled particles[15]), driven granular matter (e.g. vibrated monolayers[16]), swarming robots and Quinke rotators.

Concepts in Active matter

Active matter systems

Einzelnachweise

  1. Sriram Ramaswamy: The Mechanics and Statistics of Active Matter. In: Annual Review of Condensed Matter Physics. 1, Nr. 1, 1. Januar 2010, S. 323–345. arxiv:1004.1933. bibcode:2010ARCMP...1..323R. doi:10.1146/annurev-conmatphys-070909-104101.
  2. M. C. Marchetti, J.F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao, R. Adita Simha: Hydrodynamics of soft active matter. In: Reviews of Modern Physics. 85, Nr. 3, 2012, S. 1143–1189. arxiv:1207.2929. bibcode:2013RvMP...85.1143M. doi:10.1103/RevModPhys.85.1143.
  3. Vorlage:Cite arxiv
  4. Michael E. Cates, Julien Tailleur: Motility-Induced Phase Separation. In: Annual Review of Condensed Matter Physics. 6, January 2, 2015, S. 219–244. arxiv:1406.3533. bibcode:2015ARCMP...6..219C. doi:10.1146/annurev-conmatphys-031214-014710.
  5. Antoine Bricard, Jean-Baptiste Caussin, Nicolas Desreumaux, Olivier Dauchot, Denis Bartolo: Emergence of macroscopic directed motion in populations of motile colloids. In: Nature. 503, Nr. 7474, 6 November 2013, S. 95–98. arxiv:1311.2017. bibcode:2013Natur.503...95B. doi:10.1038/nature12673. PMID 24201282.
  6. I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet: Dynamic Clustering in Active Colloidal Suspensions with Chemical Signaling. In: Physical Review Letters. 108, Nr. 26, 26 June 2012. arxiv:1202.6264. bibcode:2012PhRvL.108z8303T. doi:10.1103/PhysRevLett.108.268303. PMID 23005020.
  7. T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Shochet: Novel type of phase transition in a system of self-driven particles. In: Physical Review Letters. 75, Nr. 6, 1995, S. 1226–1229. arxiv:cond-mat/0611743. bibcode:1995PhRvL..75.1226V. doi:10.1103/PhysRevLett.75.1226. PMID 10060237.
  8. a b John Toner, Yuhai Tu, Sriram Ramaswamy: Hydrodynamics and phases of flocks. In: Annals of Physics. 318, Nr. 1, 1. Juli 2005, S. 170–244. bibcode:2005AnPhy.318..170T. doi:10.1016/j.aop.2005.04.011.
  9. Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, Ofer Shochet: Novel Type of Phase Transition in a System of Self-Driven Particles. In: Physical Review Letters. 75, Nr. 6, 7. August 1995, S. 1226–1229. arxiv:cond-mat/0611743. bibcode:1995PhRvL..75.1226V. doi:10.1103/PhysRevLett.75.1226. PMID 10060237.
  10. Hugues Chaté, Francesco Ginelli, Guillaume Grégoire, Franck Raynaud: Collective motion of self-propelled particles interacting without cohesion. In: Physical Review E. 77, Nr. 4, 18. April 2008, S. 046113. arxiv:0712.2062. bibcode:2008PhRvE..77d6113C. doi:10.1103/PhysRevE.77.046113. PMID 18517696.
  11. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi: Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. In: Proceedings of the National Academy of Sciences. 105, Nr. 4, 29. Januar 2008, ISSN 0027-8424, S. 1232–1237. arxiv:0709.1916. bibcode:2008PNAS..105.1232B. doi:10.1073/pnas.0711437105. PMID 18227508. PMC 2234121 (freier Volltext).
  12. J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller, S. J. Simpson: From Disorder to Order in Marching Locusts. In: Science. 312, Nr. 5778, 2. Juni 2006, ISSN 0036-8075, S. 1402–1406. bibcode:2006Sci...312.1402B. doi:10.1126/science.1125142. PMID 16741126.
  13. Xavier Trepat, Michael R. Wasserman, Thomas E. Angelini, Emil Millet, David A. Weitz, James P. Butler, Jeffrey J. Fredberg: Physical forces during collective cell migration. In: Nature Physics. 5, Nr. 6, 1. Juni 2009, ISSN 1745-2473, S. 426–430. bibcode:2009NatPh...5..426T. doi:10.1038/nphys1269.
  14. Felix C. Keber, Etienne Loiseau, Tim Sanchez, Stephen J. DeCamp, Luca Giomi, Mark J. Bowick, M. Cristina Marchetti, Zvonimir Dogic, Andreas R. Bausch: Topology and dynamics of active nematic vesicles. In: Science. 345, Nr. 6201, 5. September 2014, ISSN 0036-8075, S. 1135–1139. arxiv:1409.1836. bibcode:2014Sci...345.1135K. doi:10.1126/science.1254784. PMID 25190790. PMC 4401068 (freier Volltext).
  15. Jeremie Palacci, Stefano Sacanna, Asher Preska Steinberg, David J. Pine, Paul M. Chaikin: Living Crystals of Light-Activated Colloidal Surfers. In: Science. 339, Nr. 6122, 22. Februar 2013, ISSN 0036-8075, S. 936–940. bibcode:2013Sci...339..936P. doi:10.1126/science.1230020. PMID 23371555.
  16. Julien Deseigne, Olivier Dauchot, Hugues Chaté: Collective Motion of Vibrated Polar Disks. In: Physical Review Letters. 105, Nr. 9, 23. August 2010, S. 098001. arxiv:1004.1499. bibcode:2010PhRvL.105i8001D. doi:10.1103/PhysRevLett.105.098001. PMID 20868196.

Vorlage:Swarming

[[Category:Soft matter]] [[Category:Crowds]]