Benutzer:Rosyst/WH

aus Wikipedia, der freien Enzyklopädie
Dieser Artikel (WH) ist im Entstehen begriffen und noch nicht Bestandteil der freien Enzyklopädie Wikipedia.
Wenn du dies liest:
  • Der Text kann teilweise in einer Fremdsprache verfasst, unvollständig sein oder noch ungeprüfte Aussagen enthalten.
  • Wenn du Fragen zum Thema hast, nimm am besten Kontakt mit dem Autor Rosyst auf.
Wenn du diesen Artikel überarbeitest:
  • Bitte denke daran, die Angaben im Artikel durch geeignete Quellen zu belegen und zu prüfen, ob er auch anderweitig den Richtlinien der Wikipedia entspricht (siehe Wikipedia:Artikel).
  • Nach erfolgter Übersetzung kannst du diese Vorlage entfernen und den Artikel in den Artikelnamensraum verschieben. Die entstehende Weiterleitung kannst du schnelllöschen lassen.
  • Importe inaktiver Accounts, die länger als drei Monate völlig unbearbeitet sind, werden gelöscht.

The Whitehead conjecture (also known as the Whitehead asphericity conjecture) is a claim in algebraic topology. It was formulated by J. H. C. Whitehead in 1941. It states that every connected subcomplex of a two-dimensional aspherical CW complex is aspherical.

A group presentation is called aspherical if the two-dimensional CW complex associated with this presentation is aspherical or, equivalently, if . The Whitehead conjecture is equivalent to the conjecture that every sub-presentation of an aspherical presentation is aspherical.

In 1997, Mladen Bestvina and Noel Brady constructed a group G so that either G is a counterexample to the Eilenberg–Ganea conjecture, or there must be a counterexample to the Whitehead conjecture; in other words, it is not possible for both conjectures to be true.

References


Category:Algebraic topology Category:Conjectures Category:Unsolved problems in mathematics

Vorlage:Topology-stub