Benutzer:SmartAssLevelPro/Kato theorem
Dieser Artikel (Kato theorem) ist im Entstehen begriffen und noch nicht Bestandteil der freien Enzyklopädie Wikipedia. | |
Wenn du dies liest:
|
Wenn du diesen Artikel überarbeitest:
|
Vorlage:Short description The Kato theorem, or Kato's cusp condition (after Japanese mathematician Tosio Kato), is used in computational quantum physics.[1][2] It states that for generalized Coulomb potentials, the electron density has a cusp at the position of the nuclei, where it satisfies
Here Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbf{R_k} } denotes the positions of the nuclei, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Z_k } their atomic number and is the Bohr radius.
For a Coulombic system one can thus, in principle, read off all information necessary for completely specifying the Hamiltonian directly from examining the density distribution. This is also known as E. Bright Wilson's argument within the framework of density functional theory (DFT). The electron density of the ground state of a molecular system contains cusps at the location of the nuclei, and by identifying these from the total electron density of the system, the positions are thus established. From Kato's theorem, one also obtains the nuclear charge of the nuclei, and thus the external potential is fully defined. Finally, integrating the electron density over space gives the number of electrons, and the (electronic) Hamiltonian is defined. This is valid in a non-relativistic treatment within the Born–Oppenheimer approximation, and assuming point-like nuclei.
Einzelnachweise
- ↑ Tosio Kato: On the eigenfunctions of many-particle systems in quantum mechanics. In: Communications on Pure and Applied Mathematics. 10, Nr. 2, 1957, S. 151–177. doi:10.1002/cpa.3160100201.
- ↑ N. H. March: Spatially dependent generalization of Kato's theorem for atomic closed shells in a bare Coulomb field. In: Phys. Rev. A. 33, Nr. 1, 1986, S. 88–89. bibcode:1986PhRvA..33...88M. doi:10.1103/PhysRevA.33.88. PMID 9896587.
[[Category:Quantum mechanics]] [[Category:Theorems in quantum mechanics]] Vorlage:Quantum-stub