Benutzer:Sulai/RNA Welt Hyptothese

aus Wikipedia, der freien Enzyklopädie

Quellen:

Siehe auch:

Relikte der RNA Welt:

  • Ribosomale RNA's
  • tRNA
  • Ribozym
  • Selbstspleißende Intronsequenzen

Die RNA-Welt-Hypothese (von chemische Evolution und RNA

Die RNA-Welt-Hypothese wurde erstmals 1986 von Walter Gilbert vorgeschlagen und besagt, dass RNA-Moleküle in der chemischen Evolution die Vorläufer der Organismen waren.

Die Hypothese lässt sich ableiten aus der Fähigkeit der RNA zur Speicherung, Übertragung und Vervielfältigung genetischer Informationen sowie aus ihrer Fähigkeit, als Ribozyme Reaktionen zu katalysieren. In einer Evolutionsumgebung würden diejenigen RNA-Moleküle gehäuft vorkommen, die sich selbst bevorzugt vermehren.


RNA wird aufgrund diverser Eigenschaften für älter gehalten als DNA. Unter anderem wird Ribose im Gegensatz zu Desoxyribose leicht durch Aldolkondensation gebildet. Auch startet selbst die heutige DNA-Replikation mit RNA-Synthese. Ausgangspunkt der RNA-Evolution sind einfache, sich selbst replizierende RNA-Moleküle. Einige davon erhalten die Eigenschaft, die Synthese von Proteinen zu katalysieren, die selbst wieder die Synthese der RNA und ihre eigene Synthese katalysieren (Entwicklung der Translation). Einige RNA-Moleküle lagern sich zu doppelsträngigen RNA-Molekülen zusammen, die sich zu DNA-Molekülen und Trägern der Erbinformation weiterentwickeln (Entwicklung der Transkription).

Als Grundlage dienen bestimmte RNA-Moleküle, die von beliebigen RNA-Vorlagen und damit von sich selbst Kopien erzeugen können. Jennifer A. Doudna und Jack W. Szostak benutzten als Vorlage zur Entwicklung dieses RNA-Typs das selbst-spleißende Intron des eukaryotischen Einzellers Tetrahymena thermophila. Damit besteht die Möglichkeit, dass in den Ribosomen die eigentlich katalytischen Moleküle die rRNA sind und somit RNA die Eiweißsynthese katalysiert. Einschränkungen bestehen allerdings darin, dass bei der selbstreplizierenden RNA als Bausteine nicht Mononukleotide sondern Oligonukleotide und Hilfsstoffe benötigt werden.

2001 wurde entdeckt, dass die wichtigen katalytischen Zentren der Ribosomen von RNA und nicht, wie vorher angenommen, von Proteinen gestellt werden.

Dies zeigt, dass eine katalytische Funktion der RNA, wie sie in der RNA-Welt-Hypothese vorgeschlagen wurde, heute von Lebewesen genutzt wird. Da Ribosomen als sehr ursprüngliche Zellbausteine gelten, gilt diese Entdeckung als wichtiger Beitrag zur Untermauerung der RNA-Welt-Hypothese. Man ist nun sicher, dass RNA-Moleküle – zumindest prinzipiell – in der Lage sind, Aminosäuren zu Proteinen zu verketten. In diesem Zusammenhang ist auch die PNA (Peptid-Nukleinsäure) als mögliches Vorläufermolekül der RNA von Interesse.

Siehe auch: Quasispezies, Manfred Eigen


Das Henne-Ei-Problem und die Entwicklung des Lebens (von Henne-Ei-Problem)

Als Charles Darwin seine Evolutionstheorie als Begründung für die Entwicklung der unterschiedlichen Lebensformen auf der Erde propagierte und diese Vorstellung sich in der Wissenschaft und im Laufe des 20. Jahrhunderts allmählich auch in der theologischen Lehrmeinung immer mehr durchzusetzen begann, wurde die Frage, was wohl zuerst da war, die Henne oder das Ei, zu einem viel diskutierten Thema.

Die konkrete Frage nach der Herkunft des Tieres Huhn stellt allerdings aus heutiger wissenschaftlicher Sicht kein Henne-Ei-Problem mehr dar, da ein großer Teil der Wissenschaftler annimmt, dass es sich evolutionär aus Vorläufern entwickelt hat, also im biologischen Sinn weder ein „erstes Huhn“ noch ein „erstes Hühnerei“ existierte.

Die Fragestellung taucht in der Biologie erst im Zusammenhang mit der Entschlüsselung der Details der Entstehung des Lebens in der zweiten Hälfte des 20. Jahrhunderts als präbiotisches Henne-Ei-Problem wieder auf:
Heutiges Leben beruht sowohl auf Proteinen, die als Katalysatoren für die RNA-Replikation benötigt werden, als auch auf RNA, die die Protein-Synthese aus Aminosäuren steuert. Für die Synthese der Nukleinsäuren werden in den einfachsten heute bekannten Zellen mehr als hundert Enzyme (also Proteine) gebraucht. Zur Proteinbiosynthese wird in den Zellen wiederum die genetische Information benötigt, die auf der DNA abgelegt . Welcher der beiden Molekültypen sollte zuerst entstanden sein? Ohne die gleichzeitige Existenz von Proteinen und Nukleinsäuren kommen heutige Lebensprozesse nicht aus.

Heute wird meist die RNA-Welt als elegante Erklärung angesehen. Besonders die Entdeckung der Fähigkeit von RNA-Molekülen andere RNA-Moleküle zu katalysieren (Thomas R. Cech, Sidney Altman, Nobelpreis für Chemie 1989) ist hier von Bedeutung. Dadurch wurde klar, dass RNA, welche sowohl katalysierende Eigenschaften wie die Proteine als auch informationsspeichernde Fähigkeiten wie die DNA besitzt, das Potential zur Selbstreplikation besitzt; RNA-Moleküle sind als „Alleskönner“ also praktisch Henne und Ei in Einem. Unterstützt werden solche Vorstellungen von der Entdeckung der enzymfreien Selbstreplikation von kurzen Nukleinsäuren (Kiedrowski, 1986) sowie mehrerer anderer selbstreplizierender Systeme (darunter auch Peptidsysteme). Hier sind wiederum besonders solche Replikations-Systeme mit nahezu exponentiellem Wachstum von Bedeutung, da diese Eigenschaften für die weitere Evolvierbarkeit der Systeme, letztlich hin zu zellulärem Leben, wichtig ist. Auch die Entdeckung, dass PNA oder TNA als mögliche RNA-Vorläufermoleküle für Entstehung der RNA-Welt von Bedeutung sein können, unterstützt diese Vorstellung.



english rna-world-hypothesis article

RNA with its nitrogenous bases to the left and DNA to the right.

The RNA world hypothesis is a theory which proposes that a world filled with RNA (ribonucleic acid) based life predates current DNA (deoxyribonucleic acid) based life. RNA, which can store information like DNA and catalyze reactions like proteins (enzymes), may have supported cellular or pre-cellular life. Some theories as to the origin of life present RNA-based catalysis and information storage as the first step in the evolution of cellular life.

The RNA world is proposed to have evolved into the DNA and protein world of today. DNA, through its greater chemical stability, took over the role of data storage while protein, which is more flexible in catalysis through the great variety of amino acids, became the specialized catalytic molecules. The RNA world hypothesis suggests that RNA in modern cells, in particular rRNA (RNA in the ribosome which catalyzes protein production), is the evolutionary remnant of the RNA world.

History

The phrase "RNA World" was first used by Nobel laureate Walter Gilbert in 1986, in a commentary on recent observations of the catalytic properties of various forms of RNA.[1] However, the idea of independent RNA life is older and can be found in Carl Woese's The Genetic Code[2]. In 1963, the molecular biologist Alexander Rich, of the Massachusetts Institute of Technology, had posited much the same idea in an article he contributed to a volume issued in honor of Nobel-laureate physiologist Albert Szent-Györgyi.

Properties of RNA

The properties of RNA make the idea of the RNA world hypothesis conceptually possible, although its plausibility as an explanation for the origin of life is debated. RNA is known to form efficient catalysts and its similarity to DNA makes its ability to store information clear.

A slightly different version of the hypothesis is that a different type of nucleic acid, termed pre-RNA, was the first one to emerge as a self-reproducing molecule, to be replaced by RNA only later. Such nucleic acids are sometimes more easily produced and/or polymerized under pre-biotic conditions. The uracil is from the DNA production of thymine which is formed in DNA with Adenine but now is with Uracil. Suggestions for such nucleic acids include PNA, TNA or GNA [3] [4].

RNA as an enzyme

RNA enzymes, or ribozymes, are possible although not common in today's DNA-based life. However ribozymes play vital roles; ribozymes are essential components of the ribosome, which is vital for protein synthesis. Many ribozyme functions are possible: nature widely uses RNA self-splicing and directed evolution has created ribozymes with a variety of activities.

Among the enzymatic properties important for the beginning of life are:

  • The ability to self-duplicate, or duplicate other RNA molecules. Relatively short RNA molecules that can duplicate others have been artificially produced in the lab. The shortest was 165-base long, though it has been estimated that only part of the bases were crucial for this function. One version, 189-base long, had fidelity of 98.9% [5], which would mean it would make an exact copy of an RNA molecule as long as itself in one of every eight copies.
  • The ability to catalyze simple chemical reactions which will enhance the creation of molecules which are building blocks of RNA molecules. Relatively short RNA molecule with such abilities have been artificially formed in the lab. [6] [7]
  • The ability to form peptide bonds, in order to produce short peptides, or—eventually—full proteins. This is done in modern cells by ribosomes, a complex of two large RNA molecules known as rRNA and many proteins; The two rRNA molecules are thought to be responsible for its enzymatic activity. A much shorter RNA molecule has been formed in lab with the ability to form peptide bonds, and it has been suggested that rRNA has evolved from a similar molecule [8]. It has also been suggested that amino acids may have initially been complexed with RNA molecules as cofactors enhancing or divesifying their enzymatic capabilities, before evolving to the more complex peptides; mRNA may have evolved from such RNA molecules, and tRNA from RNA molecules which had catalyzed amino acid transfer to them [9].

RNA in information storage

RNA is a very similar molecule to DNA, and only has two chemical differences. The overall structure of RNA and DNA are immensely similar - one strand of DNA and one of RNA can bind to form a double helical structure. This makes the storage of information in RNA possible in a very similar way to the storage of information in DNA.

Comparison of DNA and RNA structure

The major difference is the presence of a hydroxyl group at the 2'-position of the ribose sugar in RNA. This group makes the molecule less stable; in flexible regions of an RNA molecule (ie. where not constrained in a double helix), it can chemically attack the adjacent phosphodiester bond to cleave the phosphodiester backbone. The hydroxyl group also forces the ribose into the C3'-endo sugar conformation unlike the C2'-endo conformation of the deoxyribose sugar in DNA. This forces a RNA double helix into a slightly different conformation to DNA.

RNA also uses a different set of bases to DNA - adenine, guanine, cytosine and uracil instead of adenine, guanine, cytosine and thymine. Chemically uracil is similar to thymine, although uses less energy to produce. In terms of base pairing this has no effect, adenine will readily bind uracil or thymine. Uracil is, however, one product of damage to cytosine making RNA particularly susceptible to mutations which replace a GC base pair with a GU (wobble) or AU base pair.

Limitations of information storage in RNA

Storage of large amounts of information in RNA is not easy. The chemical properties of RNA make large RNA molecules inherently fragile and can easily be broken down into their constituent nucleotides through hydrolysis. The aromatic bases also absorb strongly in the ultraviolet region, and would have been susceptible to damage and breakdown by background radiation[10] [11]. These limitations do not make use of RNA as an information store impossible, simply energy intensive (to repair or replace damaged RNA molecules) and mutation prone. While this makes it unsuitable for current 'DNA optimised' life it may have been suitable for primitive life.

Support

The RNA World hypothesis is supported by RNA's ability to store, transmit, and duplicate genetic information, as DNA does. RNA can also act as a ribozyme (an enzyme made of ribonucleic acid). Because it can reproduce on its own, performing the tasks of both DNA and proteins (enzymes), RNA is believed to have once been capable of independent life. Further, while nucleotides were not found in Miller-Urey's origins of life experiments, they were found by others' simulations, notably those of Joan Oro. Experiments with basic ribozymes, like the viral RNA Q-beta, have shown that simple self-replicating RNA structures can withstand even strong selective pressures (e.g., opposite-chirality chain terminators) (The Basics of Selection (London: Springer, 1997)).

Additionally, in the past a given RNA molecule might have survived longer than it can today. Ultraviolet light can cause RNA to polymerize while at the same time breaking down other types of organic molecules that could have the potential of catalyzing the break down of RNA (ribonucleases), suggesting that RNA may have been a relatively common substance on early Earth. This aspect of the theory is still untested and is based on a constant concentration of sugar-phosphate molecules.

Difficulties

Since there are no known chemical pathways for the abiogenic synthesis of nucleotides from pyrimidine nucleobases cytosine and uracil under prebiotic conditions it may be that nucleic acids did not contain the nucleobases seen in life's nucleic acids.[12] Tellingly, the nucleoside cytosine has has a half-life in isolation of 19 days at 100°C and 17,000 years in freezing water, which is still very short on the geologic time scale.[13] Others have questioned whether ribose and other backbone sugars could be stable enough to be found in the original genetic material.[14] For example, the ester linkage of ribose and phosphoric acid in RNA is known to be prone to hydrolysis.[15] Additionally, ribose must all be the same enantiomer, because any nucleotides of the wrong chirality act as chain terminators[16].

Graham Cairns-Smith advocated for some time that the RNA world and other prebiotic soup implications made from the Miller-Urey experiment required a prohibitive number of steps for abiogenesis, and instead proposed a now widely-discredited "clay theory" of abiogenesis.

Details of the RNA world

Mechanism for prebiotic RNA synthesis

Nucleotides are the fundamental molecules that combine in series to form RNA. They consist of a nitrogenous base attached to a sugar-phosphate backbone. RNA is made of long stretches of specific nucleotides arranged so that their sequence of bases carries information. The RNA world hypothesis holds that in the primordial soup / primordial sandwich there existed free-floating nucleotides. These nucleotides regularly formed bonds with one another, which often broke because the change in energy was so low. However, certain sequences of base pairs have catalytic properties that lower the energy of their chain being created, causing them to stay together for longer periods of time. As each chain grew longer it attracted more matching nucleotides faster, causing chains to now form faster than they were breaking down.

These chains are proposed as the first, primitive forms of life. In an RNA world, different forms of RNA compete with each other for free nucleotides and are subject to natural selection. The most efficient molecules of RNA, the ones able to efficiently catalyze their own reproduction, survived and evolved, forming modern RNA.

Competition between RNA may have favored the emergence of cooperation between different RNA chains, opening the way for the formation of the first proto-cell. Eventually, RNA chains randomly developed with catalytic properties that help amino acids bind together (peptide-bonding). These amino acids could then assist with RNA synthesis, giving those RNA chains that could serve as ribozymes the selective advantage. Eventually DNA, lipids, carbohydrates, and all sorts of other chemicals were recruited into life. This led to the first prokaryotic cells, and eventually to life as we know it.

Further developments

Patrick Forterre has been working on a controversial hypothesis, that viruses were instrumental in the transition from RNA to DNA and the evolution of Bacteria, Archaea, and Eukaryota. He believes the last common ancestor was RNA-based and evolved RNA viruses. Some of the viruses evolved into DNA viruses to protect their genes from attack. Through the process of viral infection into hosts the three domains of life evolved. [17]

Alternative theories

As mentioned above, a different verion of the same theory is "pre-RNA world", where a different nucleic acid is proposed to pre-date RNA. A proposed alternative is the peptide nucleic acid, PNA. PNA is more stable than RNA and appears to be more readily synthesized in prebiotic conditions, especially where the synthesis of ribose and adding phosphate groups are problematic, because it contains neither. Threose nucleic acid (TNA) has also been proposed as a starting point, as has Glycol nucleic acid GNA.

A different - or complementary - alternative to the assembly of RNA is proposed in the PAH world hypothesis.

Implications of the RNA world

The RNA world hypothesis, if true, has important implications for the very definition of life. For the majority of the time following the elucidation of the structure of DNA by Watson and Crick, life was considered as being largely defined in terms of DNA and proteins: DNA and proteins seemed to be the dominant macromolecules in the living cell, with RNA serving only to aid in creating proteins from the DNA blueprint.

The RNA world hypothesis places RNA at center-stage when life originated. This has been accompanied by many studies in the last ten years demonstrating important aspects of RNA function that were not previously known, and support the idea of a critical role for RNA in the functionality of life. In 2001, the RNA world hypothesis was given a major boost with the deciphering of the 3-dimensional structure of the ribosome, which revealed the key catalytic sites of ribosomes to be composed of RNA and for the proteins to hold no major structural role, and be of peripheral functional importance. Specifically, the formation of the peptide bond, the reaction that binds amino acids together into proteins, is now known to be catalyzed by an adenine residue in the rRNA: the ribosome is a ribozyme. This finding suggests that RNA molecules were most likely capable of generating the first proteins. Other interesting discoveries demonstrating a role for RNA beyond a simple message or transfer molecule include the importance of small nuclear ribonucleoproteins (SnRNPs) in the processing of pre-mRNA and RNA editing and reverse transcription from RNA in Eucaryotes in the maintenance of telomeres in the telomerase reaction.

See also

References

  1. Walter Gilbert: The RNA World. In: Nature. 319, Februar 1986, S. 618. doi:10.1038/319618a0.
  2. Carl Woese: The Genetic Code. Harper & Row, Jan 1968, ISBN 978-0060471767.
  3. Leslie Orgel: A Simpler Nucleic Acid. In: Science. 290, Nr. 5495, November 2000, S. 1306-7. doi:10.1126/science.290.5495.1306.
  4. Nelson, K.E., Levy, M.; Miller, S.L.: Peptide nucleic acids rather than RNA may have been the first genetic molecule. In: Proc. Natl. Acad. Sci. USA. 97, Nr. 8, April 2000, S. 3868–71. PMID 10760258.
  5. W. K. Johnston, P. J. Unrau, M. S. Lawrence, M. E. Glasner and D. P. BartelRNA-Catalyzed RNA Polymerization: Accurate and General RNA-Templated Primer Extension. Science 292, 1319 (2001)
  6. Huang, Yang, and Yarus, RNA enzymes with two small-molecule substrates. Chemistry & Biology, Vol 5, 669-678, November 1998
  7. Unrau, P.J. and Bartel, D.P. (1998) RNA-catalysed nucleotide synthesis. Nature 395, 260-263
  8. Zhang and Cech, Peptide bond formation by in vitro selected ribozymes. Nature 390, 96-100
  9. Szathmary E., The origin of the genetic code: amino acids as cofactors in an RNA world. Trends in Genetics, Volume 15, Number 6, 1 June 1999 , pp. 223-229(7)
  10. T Lindahl: Instability and decay of the primary structure of DNA. In: Nature. 362, Nr. 6422, April 1993, S. 709-15. PMID8469282.
  11. Vorlage:Citejournal
  12. L. Orgel, The origin of life on earth. Scientific American. 271 (4) p. 81, 1994.
  13. Matthew Levy and Stanley L. Miller, The stability of the RNA bases: Implications for the origin of life, Proceedings of the National Academy of Science USA 95, 7933–7938 (1998)
  14. Larralde R, Robertson M P, Miller S L. Proc Natl Acad Sci USA. 1995;92:8158–8160.
  15. Lindahl T. Nature (London). 1993;362:709–715.
  16. Joyce GF, Visser GM, van Boeckel CA, van Boom JH, Orgel LE, van Westrenen J.: Chiral selection in poly(C)-directed synthesis of oligo(G). In: Nature. 310, Nr. 5978, August 1984, S. 602-4. PMID 6462250.
  17. Zimmer C.: Did DNA come from viruses?. In: Science. 312, Nr. 5775, 2006, S. 870-2. PMID 16690855.
  • A. G. Cairns-Smith: Genetic Takeover: And the Mineral Origins of Life. Cambridge University Press, 1993, ISBN 0-521-23312-7.
  • L. E. Orgel: The origin of life on the Earth. In: Scientific American. 271, Oktober 1994, S. 76-83.
  • Adrian Woolfson: Life Without Genes. Flamingo, London Sep 2000, ISBN 978-0006548744.
  • Alexander V. Vlassov: The RNA World on Ice: A New Scenario for the Emergence of RNA Information. In: Journal of Molecular Evolution. 61, Juli 2005, S. 264-273.

External links