g r a d φ ( x 1 , … , x n ) = ∇ φ ( x 1 , … , x n ) = ( ∂ φ ∂ x 1 ⋮ ∂ φ ∂ x n ) {\displaystyle \mathrm {grad} \varphi (x_{1},\ldots ,x_{n})=\nabla \varphi (x_{1},\ldots ,x_{n})={\begin{pmatrix}{\frac {\partial \varphi }{\partial x_{1}}}\\\vdots \\{\frac {\partial \varphi }{\partial x_{n}}}\end{pmatrix}}}
div F → = ∂ F x ∂ x + ∂ F y ∂ y + ∂ F z ∂ z = ∇ ⋅ F → {\displaystyle \operatorname {div} {\vec {F}}={\frac {\partial F_{x}}{\partial x}}+{\frac {\partial F_{y}}{\partial y}}+{\frac {\partial F_{z}}{\partial z}}=\nabla \cdot {\vec {F}}}
rot F → = ∇ × F → = ( ∂ ∂ x ∂ ∂ y ∂ ∂ z ) × ( F x F y F z ) = ( ∂ F z ∂ y − ∂ F y ∂ z ∂ F x ∂ z − ∂ F z ∂ x ∂ F y ∂ x − ∂ F x ∂ y ) {\displaystyle \operatorname {rot} {\vec {F}}=\nabla \times {\vec {F}}={\begin{pmatrix}{\frac {\partial }{\partial x}}\\{\frac {\partial }{\partial y}}\\{\frac {\partial }{\partial z}}\end{pmatrix}}\times {\begin{pmatrix}F_{x}\\F_{y}\\F_{z}\end{pmatrix}}={\begin{pmatrix}{\frac {\partial F_{z}}{\partial y}}-{\frac {\partial F_{y}}{\partial z}}\\{\frac {\partial F_{x}}{\partial z}}-{\frac {\partial F_{z}}{\partial x}}\\{\frac {\partial F_{y}}{\partial x}}-{\frac {\partial F_{x}}{\partial y}}\end{pmatrix}}}
∭ V ( ∇ ⋅ F ) d V = ∬ A F ⋅ d A {\displaystyle \iiint \limits _{V}\left(\nabla \cdot \mathbf {F} \right)dV=\iint \limits _{A}\mathbf {F} \cdot dA} mit A = ∂ V {\displaystyle A=\partial V}