Chua-Schaltkreis
Der Chua-Schaltkreis[1] (englisch Chua’s Circuit) ist eine elektronische Schaltung, die erstmals 1983 von Leon. O Chua beschrieben und 1984 veröffentlicht wurde.[2] Die Schaltung weist chaotisches Verhalten auf und eignet sich als Demonstrationsobjekt für Effekte der Chaostheorie und nichtlineare Dynamik.
Elektronischer Aufbau
Die nebenstehende Schaltskizze zeigt einen Chua-Schaltkreis. Der Operationsverstärker OPA zusammen mit den beiden 290-Ohm-Widerständen und R1 bildet einen negativen Widerstand mit dem Wert Zusammen mit dem linken Schaltungsteil bildet sich eine oszillierende Schaltung. Soweit die variierende Spannung die Flussspannung der Dioden D1, D2 überschreitet (in positiver wie in negativer Richtung), steigt der differentielle Leitwert auf
Die das System beschreibende Differentialgleichung wird somit nichtlinear und die Dynamik des Systems weist die typischen Effekte chaotischer Systeme, wie Bifurkation und einen seltsamen Attraktor auf. Das Verhalten des vorliegenden Systems wird zumeist in Abhängigkeit vom Wert des Kopplungswiderstands beschrieben.
Theoretische Beschreibung
Der Schaltkreis lässt sich mit Hilfe der Kirchhoffschen Regeln beschreiben. Dazu wählt man beispielsweise die Spannungen an den beiden Kondensatoren und sowie den Spulenstrom als dynamische Variablen, die den Phasenraum aufspannen. Das Verhalten des nichtlinearen Widerstandes lässt sich mit einer Funktion modellieren, die dessen Strom-Spannungs-Kennlinie wiedergibt. Man beachte hierbei, dass am nicht-linearen Widerstand die gleiche Spannung wie am Kondensator anliegt.
Durch Anwenden der Knotenregel auf die Knoten über den beiden Kondensatoren erhält man
Aus der Maschenregel erhält man
Dieses Differentialgleichungssystem charakterisiert die gesamte Dynamik des Systems. Die Lösung dessen ist eine Trajektorie im Phasenraum, die bei gegebenen Anfangsbedingungen die zeitliche Evolution des Systems beschreibt, wobei zu jedem Zeitpunkt der Zustand des Systems durch einen Punkt im Phasenraum gegeben ist. Da die Lösungstrakjektorie eindeutig ist, ist das Verhalten von Chuas Schaltkreis streng deterministisch.
Einzelnachweise
- ↑ Wolfgang A. Halang (Hrsg.): Herausforderungen durch Echtzeitbetrieb: Echtzeit 2011. Springer-Verlag, 2011, ISBN 3-642-24658-3, S. 4 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ Takashi Matsumoto: A Chaotic Attractor from Chua’s Circuit. In: IEEE (Hrsg.): IEEE Transactions on Circuits and Systems. CAS-31, Nr. 12, Dezember 1984, S. 1055–1058. Abgerufen am 1. Mai 2008.
Weblinks
- chuacircuits.com Schaltpläne, Gleichungen, interaktive Simulationen und Bilder
- Chua's circuit
- NOEL -- Berkeley