Diskussion:Stabilität (Numerik)
"Da man zeigen kann, dass die relative Kondition der Addition bei zwei Zahlen im Falle der Auslöschung beliebig schlecht sein kann, folgt aus der Definition der Vorwärtsanalyse, dass die Addition als numerisches Verfahren (im Computer) stabil ist." Warum?
Definition der Stabilität
Oft wird Stabilität im Vergleich zur Kondition anders definiert: "Ein Verfahren heißt numerisch stabil, falls die im Lauf der Rechnung akkumulierten Rundungsfehler den durch die Konditionierung der numerischen Aufgabe unvermeidlichen Problemfehler nicht übersteigen." Das wäre gerade gegenteilig zur hiesigen Erklärung, denn Bedingung für numerische Stabilität ist, dass der Rundungsfehler, der bei Durchführung des Algorithmus auftaucht, kleiner ist, als der Fehler durch "Störung der Eingabedaten"!
Rückwärtsstabilität
Kenne ich etwas anders.
Ich versuche mich mal kurz zu fassen: Ein Algorithmus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde f: D\subset\mathbb{R}^m\rightarrow \mathbb{R}^n} für ein Problem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f:D\subset\mathbb{R}^m\rightarrow \mathbb{R}^n} ist rückwärtsstabil, falls Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle x\in D\mapsto {\frac {\operatorname {dist} (x,f^{-1}({\tilde {f}}(x)))}{\|x\|}}} gleichmäßig beschränkt ist. Manchmal werden weitere problemabhängige Bedingungen an das Supremum gestellt.
Hier ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{dist}(x,f^{-1}(\tilde f(x)))} der Rückwärtsfehler des Problems an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} . Das ist der Abstand von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} zu der Menge der Ausgangsdaten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde x} bei denen das Originalproblem gerade den Wert Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f(\tilde x) = \tilde f(x)} annimmt.
Wenn ich das richtig interpretiere, ist das die Variante aus:
- Schaback, Werner: Numerische Mathematik, 4. Aufl., Springer, 1993.
- Martin Hanke-Bourgeois: Grundlagen der Numerischen Mathematik und des Wissenschaftlichen Rechnens, 2. Aufl, Teubner, 2006.
--TN 01:11, 16. Aug. 2007 (CEST)
- Habe in diesem Diskussionsbeitrag den absoluten durch den relativen Fehler ersetzt. --TN 08:41, 16. Aug. 2007 (CEST)
- Ich meine mich zu erinnern das ich die Version des Artikels mal anhand "Deuflhard, Hohmann: Numerische Mathematik I" nachgeprüft hätte. Hast Du da mal reingeschaut? --Mathemaduenn 22:22, 16. Aug. 2007 (CEST)
- So, wie es im Artikel steht, kann es auf keinen Fall stimmen. Die Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta} ist nach dem Artikeltext nicht eindeutig. Eventuell muss man statt der beliebigen Schranken das Supremum nehmen. Dann muss aber noch was an der Reihenfolge der Bedingungen geändert werden. Ich denke nicht, dass es reicht, dass es für jedes ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta} gibt..., sondern es muss ein geben, so dass für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde x,\hat x} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat x=\underset{x}{\operatorname{argmin}}\| f(x)-\tilde f(\tilde x)\|} die Ungleichung gilt.
- Die Sache mit ist (wie ich die Sache deute) eine Erweiterung der klassischen Definition. Falls das Bild des Algorithmus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde f} im Bild vom Problem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} enthalten ist, so stimmt die Definition aus dem Artikel mit der klassischen überein (Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \| f(x)-\tilde f(\tilde x)\|} kann nicht kleiner als null werden). Falls nicht, so gibt es Diskrepanzen mit der klassischen Definition. Wird Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle {\tilde {f}}({\tilde {x}})} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} nicht angenommen, so ist der Algorithmus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde f} nach der klassischen Definition nicht rückwärtsstabil. Die Definition aus dem Artikel jedoch fordert nur, dass es eine Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat x} gibt, an der das eigentliche Problem Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle f} besonders nahe an die Lösung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde f(\tilde x)} des Algorithmus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde f} herankommt. Insofern glaube ich dir schon, dass Deuflhard sowas geschrieben hat. Mal sehen, wenn ich in der nächsten Zeit Zeit finde, leihe ich mir das Buch aus der Bibo aus.--TN 00:20, 17. Aug. 2007 (CEST)
- Ah, ja. Bei Deuflhard wird mit Sicherheit auch der relative Fehler stehen. Also statt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|\tilde x-\hat x\|<\eta} wird Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|\tilde x-\hat x\|<\eta\|\tilde x\|} dastehen. --TN 00:45, 17. Aug. 2007 (CEST)
- Habe im letzten Beitrag ein paar Schusselfehler korrigiert. --07:09, 17. Aug. 2007 (CEST)
- Ein wichtiges Beispiel in dem die eben angesprochene Modifikation der Definition für die Rückwärtsstabilität wesentlich ist, ist die Lösung partieller Differentialgleichungen mittels Galerkin-Verfahren bei stückweise polynomialen Ansatzfunktionen. Die mit dem numerischen Verfahren ermittelte Approximation der Lösung ist in den seltensten Fällen selber differenzierbar. Die Daten der eigentlichen Differentialgleichung kann man jedoch nicht so variieren, dass die nicht differenzierbare Lösungsapproximation rauskommt. Aber im Sinne der Integralnorm gibt es natürlich Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat x=\underset{x}{\operatorname{argmin}}\| f(x)-\tilde f(\tilde x)\|}
. --TN 07:09, 17. Aug. 2007 (CEST)
- Also mir war die aktuelle Version des Artikels noch nie ganz geheuer, insbesondere wegen solcher Dinge wie dem Hauptsatz der Numerik. Die Buecher im Buero liefern alle nix sinnvolles, ohne einen Gang in die Bibliothek kann ich also leider nichts handfestes beitragen und ich bin naechste Woche auch mal wieder weg. Also, oeh, frohes Schaffen :-) --P. Birken 15:25, 17. Aug. 2007 (CEST)
- Deuflhard Numerische Mathe I habe ich in meiner Bibo gefunden. Er nutzt den Rückwärtsfehler nach Wilkinson. Die im Artikel aufgeführte Definition für die Rückwärts-Stabilität ist nach den bisher gesichteten Quellen nicht nachvollziehbar. Die gewöhnlichen DGL'n von Deuflhard habe ich auch gesichtet. Soweit ich das überblicke steht da nichts zu Rückwärtsstabilität drin. Ich habe schon weiter oben begründet, dass einige Stellen in der Def. sehr fragwürdig sind. Deshalb stelle ich die Definition von der Artikelseite hier erst einmal unter Quarantäne:
Gibt es für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde x } ein Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta \ge 0} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|f(\hat x) - f(\tilde x)\| \le \eta } für , so ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \eta } die Stabilitätskonstante der Rückwärtsanalyse. Anstelle dessen setze ich jetzt die Version auf die Artikelseite, die ich in allen Literaturquellen, die ich bisher gesichtet habe, bestätigt gefunden habe. Hoffe, das ist okay so. --TN 23:18, 19. Aug. 2007 (CEST)
Inakzeptabler Artikel
In der Einleitung wird eine Scheinrechtfertigung (mathematisch vorgetäuschte Relevanz durch die Dreiecksungleichung) für "Kondition" und "Stabilität" gebracht. Als Leser stellt sich die unweigerliche Frage, warum nicht alle sechs Fälle betrachtet werden. Damit meine ich die sechs möglichen Fälle der absoluten Differenzen der sinnvollen Kombinationsmöglichkeiten von f, ^f, x und ^x:
f(x)-f(^x) "Kondition: eine Eigenschaft des Problems"
f(x)-^f(x)
f(x)-^f(^x)
f(^x)-^f(x)
f(^x)-^f(^x) "Statbilität: eine Eigenschaft des Algorithmus. Robustheit des numerischen Verfahrens gegenüber Störungen in den Eingabedaten, insbesondere bedeutet dies, dass sich Rundungsfehler nicht summieren und zu Störungen in der Lösung führen"
^f(x)-^f(^x)
Frage zur Kondition: Was ist ein "Problem"? Was ist eine "Eigenschaft" eines "Problems"?
Frage zur Stabilität: Was ist die "Eigenschaft" eines "Algorithmus"?
Die "Stabilität" beschreibt laut Artikel also die "Robustheit" eines Verfahrens... Hier wurde ein undefinierter Begriff durch einen anderen ersetzt. So geht das nicht!
Um dieses Thema in der Einleitung verständlich zu machen, ist es meines Erachtens notwendig, die sechs Fälle abzudecken, durch Beispiele zu erläutern und zu klären was für die Numerik notwendig und wichtig ist.
-- 28yearslater 04:39, 11. Jun. 2009 (CEST)
- Man kann immer alle möglichen Ausdrücke hinschreiben, das führt aber nicht unbedingt zu tollen Erkenntnissen. Diese spezielle Wahl bei der Dreiecksgleichung schon. Mit dem Rest der Kritik kann ich nicht viel anfangen, eine Eigenschaft eines Problems ist eine Eigenschaft eines Problems? --P. Birken 15:05, 11. Jun. 2009 (CEST)
-- emareg 18:04, 27.02.2016 (CEST)
- Ich habe mir allerdings das gleiche gedacht und für mich wäre viel logischer:
- f(^x)-f(x) Kondition: Wie stark schwankt das Problem bei Störung
- ^f(^x)-^f(x) Stabilität: Wie stark schwankt das Verfahren bei Störung
- ^f(x)-f(x) Konsistenz: Wie gut löst das Verfahren tatsächlich das Problem
- ^f(^x)-f(x) Konvergenz: Wie gut löst das gestörte Verfahren tatsächlich das Problem
- Dann wäre Konvergenz nämlich auch die Folge aus Stabilität und Konsistenz
Ich denke, die folgende Interpretation wäre klarer:
- f(^x)-f(x) Kondition: Wie stark schwankt das Problem bei Störung
- fh(x)-f(x) Konsistenz: Wie gut löst das Verfahren tatsächlich das Problem
- ^fh(x)-fh(x) Stabilität: Wie stark schwankt das Verfahren bei Störung
- ^fh(x)-f(x) Konvergenz: Wie gut löst das gestörte Verfahren tatsächlich das Problem
- f(x) - Problem
- fh(x) - genaue Lösung des Differenzschemas
- ^fh(x) - Computerlösung eines Differenzschemas (mit Rundung)
--FeelUs (Diskussion) 02:00, 15. Dez. 2018 (CET)
Vorwärtsanalyse
Es wäre gut, in dem Abschnitt zu erklären, warum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa} dort auftaucht. Die englische WP macht das ganz nett: Dort wird zuerst der Rückwärtsfehler eingeführt und dann erklärt, dass man sich anschauen kann, welches Problem der Algorithmus denn tatsächlich gelöst hat, sprich man schaut sich den Fehler Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \|x-\tilde x\|} für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \tilde x: f(\tilde x) = \tilde f(x)} an. Den Vorwärtsfehler kann man jetzt natürlich durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \kappa\|x-\tilde x\|} abschätzen. Da in der Definition hier die Maschinengenauigkeit auftaucht, nehme ich aber an, dass hier vorallem der durch die Maschine auftretende Fehler der Eingangsdaten berücksichtigt werden soll.
(Da ich hier eigentlich gerade selbst nachlesen wollte, wie die noch mal überhaupt definiert ist, ändere ich selbst lieber erst einmal nichts..) -- Pberndt (DS) 13:15, 25. Okt. 2010 (CEST)