Erfüllbarkeitsproblem für quantifizierte boolesche Formeln
Das Erfüllbarkeitsproblem für quantifizierte boolesche Formeln ist eine Verallgemeinerung des Erfüllbarkeitsproblems der Aussagenlogik. Es gehört zur Komplexitätstheorie und wird oft nur kurz QBF oder QSAT genannt. Dieses Entscheidungsproblem untersucht, ob eine aussagenlogische Formel, die mit Quantoren versehen ist, erfüllbar oder wahr ist.
QBF ist das kanonische PSPACE-vollständige Problem (also das klassische Beispiel eines PSPACE-vollständigen Problems).
Wird die Erfüllbarkeit von booleschen Formeln ohne freie Variable betrachtet, ist Erfüllbarkeit äquivalent zu Wahrheit. Das so entstehende Problem True Quantified Boolean Formula, kurz TQBF, ist ebenfalls PSPACE-vollständig.
Quantifizierte boolesche Formeln
Jede aussagenlogische Formel kann durch Hinzufügen von All- und Existenzquantoren erweitert werden. Die Semantik einer so gebildeten Formel ähnelt der Semantik prädikatenlogischer Formeln.
Syntax
Die Menge der quantifizierten booleschen Formeln kann wie folgt induktiv definiert werden:
- Jede Aussagenvariable Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} ist eine quantifizierte boolesche Formel. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} tritt in der Formel Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} frei auf.
- Sind Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} und quantifizierte boolesche Formeln, so auch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \neg\varphi, (\varphi\wedge\psi)} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\varphi\vee\psi)} . Eine Aussagenvariable aus Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi} ist frei in den Formeln, falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} oder Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \psi} frei ist.
- Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varphi} eine quantifizierte boolesche Formel und eine Aussagenvariable, so sind auch und quantifizierte boolesche Formeln. Der Gültigkeitsbereich von beziehungsweise erstreckt sich auf jedes freies Vorkommen von in . Jede andere nicht gebundene Aussagenvariable ist frei in und .
Semantik
Die Semantik quantifizierter boolescher Formeln orientiert sich eng an der Semantik der Prädikatenlogik: Der Wert einer quantifizierten booleschen Formel der Form wird bestimmt, indem durch ersetzt wird, wobei und dadurch entstehen, dass jedes Auftreten von durch 0 beziehungsweise 1 ersetzt wird. Analog dazu wird jedes Aufkommen von durch ersetzt.
Eine Formel, die keine freie Variablen enthält, ist damit entweder wahr oder falsch.
Pränexe Normalform
Eine quantifizierte boolesche Formel ist in pränexer Normalform, falls sie von der Form Fehler beim Parsen (Konvertierungsfehler. Der Server („https://wikimedia.org/api/rest_“) hat berichtet: „Cannot get mml. Server problem.“): {\displaystyle Q_{1}x_{1}Q_{2}x_{2}\ldots Q_{n}x_{n}\varphi } ist, wobei und Variablen einer aussagenlogischen Formel ohne Quantoren sind. Der Ausdruck heißt Quantorenblock.
Da für jede quantifizierte boolesche Formel eine äquivalente Formel in pränexer Normalform existiert und diese in Polynomialzeit konstruiert werden kann, wird häufig in Beweisen von dieser Form ausgegangen.
Das Erfüllbarkeitsproblem
Das Erfüllbarkeitsproblem für quantifizierte boolesche Formeln ist es, zu entscheiden, ob eine gegebene quantifizierte boolesche Formel ohne freie Variablen wahr oder falsch ist.
Aus der Definition der Semantik für quantifizierte boolesche Formeln lässt sich ein einfacher rekursiver Algorithmus ableiten, der das Erfüllbarkeitsproblem für quantifizierte boolesche Formeln in pränexer Normalform löst: Bei Eingabe einer Formel der Form
für eine aussagenlogische Formel und Quantoren wird der Wert von berechnet, falls keine Quantoren vorhanden sind. Andernfalls wird im Fall der Wert von und im Fall der Wert von berechnet.
Bei einer quantifizierten booleschen Formel mit Quantoren benötigt der Algorithmus also Schritte. Allerdings ist der benötigte Speicherplatz quadratisch in der Länge der Formel, das Problem liegt also in PSPACE. Weiterhin konnte gezeigt werden, dass das Entscheidungsproblem PSPACE-schwer ist.[1] Dieses Problem ist damit vollständig für die Klasse PSPACE.
Quantorenwechsel und Polynomialzeithierarchie
Aus der Struktur des Quantorenblocks einer quantifizierten booleschen Formel in Präfix-Normalform lassen sich Rückschlüsse auf komplexitätstheoretische Eigenschaften ziehen. Die Klassen der wahren quantifizierten booleschen Formeln in Präfix-Normalform sind je nach Anzahl der Alternationen von All- und Existenzquantoren und deren Reihenfolge vollständig für eine Stufe der Polynomialzeithierarchie. Im Folgenden ist für einen Quantor die Schreibweise für Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q x_{i1},Q x_{i2},...,Q x_{ik}} für eine beliebige Zahl Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} .
Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma_k} die Klasse aller wahren quantifizierten booleschen Formeln ohne freie Variablen der Form
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \exists X_1\forall X_2\exists X_3,\ldots,Q_kX_k} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_k=\forall} , falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} gerade ist und andernfalls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_k=\exists}
und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi_k} die Klasse aller wahren quantifizierten booleschen Formeln ohne freie Variablen der Form
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \forall X_1\exists X_2\forall X_3,\ldots,Q_kX_k} mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_k=\exists} , falls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k} gerade ist und andernfalls Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Q_k=\forall} ,
so gilt für alle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k\geq 0} :
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma_k} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Sigma_{k}^{\rm{P}}} -vollständig und
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi_k} ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Pi_{k}^{\rm{P}}} -vollständig.[2]
Einzelnachweise und Quellen
- ↑ Michael R. Garey, David Stifler Johnson: Computers and intractability. A guide to the theory of NP-completeness. 24. Pr. Freeman Press, New York 2003, ISBN 0-7167-1044-7.
- ↑ Larry J. Stockmeyer: The polynomial-time hierarchy. In: Theoretical Computer Science, Band 3, 1976, Heft 1, S. 1–22, ISSN 0304-3975.