Eulersche Vermutung

aus Wikipedia, der freien Enzyklopädie

Die eulersche Vermutung aus dem Jahr 1769 ist eine nach Leonhard Euler benannte Vermutung der Zahlentheorie und verallgemeinert die fermatsche Vermutung. Die eulersche Vermutung ist mittlerweile widerlegt, während die fermatsche Vermutung bewiesen wurde.

Vermutung

Die eulersche Vermutung besagt, dass es keine positiven ganzzahligen Lösungen der Gleichung für gibt. Fermat bewies angeblich die Vermutung für . Euler konnte für größere weder einen Beweis noch ein Gegenbeispiel finden.

Widerlegungen

Fall n = 5

Für den Fall fanden L. J. Lander und T. R. Parkin 1966 ein Gegenbeispiel:[1]

Fall n = 4

Für fand Noam Elkies 1988 folgendes Gegenbeispiel:[2]

Elkies bewies zudem, dass es für unendlich viele Lösungen gibt.

Die kleinste Lösung für lautet

.

Diese Minimallösung wurde nach der Publikation der ersten Lösung durch Elkies von Roger Frye gefunden.[3][4]

Verwandte Fragestellung

Zusammen mit seiner Vermutung äußerte Euler zudem, dass es möglich sein sollte, vier 4. Potenzen zu finden, deren Summe eine 4. Potenz ergibt. Diese Vermutung wurde 1911 durch R. Norrie positiv beantwortet:

Für diese allgemeine Form

wurde 2008 von Lee W. Jacobi und Daniel J. Madden gezeigt, dass sie unendlich viele positive ganzzahlige Lösungen hat. Es wurde auch eine besonders ästhetische Lösung der Form

in ganzen Zahlen gefunden:[5][6]

Diese Gleichung nennt man auch Jacobi-Madden-Gleichung.

Literatur

  • Richard K. Guy: Unsolved problems in number theory. Springer, New York 1994, ISBN 0-387-94289-0.
  • Ian Stewart, David Tall: Algebraic Number Theory and Fermat’s Last Theorem. 3. Auflage. A K Peters, Natick MA 2002, ISBN 1-56881-119-5.

Weblinks

Einzelnachweise

  1. L. J. Lander, T. R. Parkin: Counterexample to Eulers’s conjecture on sums of like powers. In: Bull. Amer. Math. Soc. Band 72, 1966, S. 1079.
  2. Noam Elkies: On . In: Math. Comput. Band 51, 1988, S. 825–835.
  3. Ian Stewart, David Tall: Algebraic Number Theory and Fermat’s Last Theorem. 3. Auflage. A. K. Peters, Natick MA 2002, ISBN 1-56881-119-5, S. 232.
  4. Ivars Peterson: Euler’s Sums of Powers. (Memento vom 1. Dezember 2012 im Internet Archive) In: ScienceNews, 2004.
  5. American Mathematical Monthly. März 2008.
  6. nzz.ch