Formales Schema

aus Wikipedia, der freien Enzyklopädie

In der algebraischen Geometrie ist ein formales Schema eine Verallgemeinerung eines Schemas. Grob gesagt beschreibt ein formales Schema eine infinitesimale Umgebung eines Schemas. Formale Schemata finden Anwendung in der Deformationstheorie und rigid-analytischen Geometrie. Es gibt verschiedene Definitionen in der Literatur, häufig werden aus technischen Gründen lediglich lokal noethersche formale Schemata definiert.

Definition

Die Definition eines formalen Schemas funktioniert analog zur Definition eines Schemas. Zunächst wird für sogenannte zulässige topologische Ringe das formale Spektrum definiert. Ein formales Schema ist dann ein Raum, der lokal isomorph zum formalen Spektrum eines zulässigen Ringes ist.

Zulässige Ringe

Ein zulässiger Ring ist ein vollständiger Hausdorffscher kommutativer topologischer Ring , der ein offenes Ideal besitzt, sodass für jede offene Umgebung von , für ein ist. Ein solches Ideal wird Definitionsideal von genannt.

Die Menge der Definitionsideale von bildet eine Umgebungsbasis der .[1]

Formales Spektrum

Sei ein zulässiger Ring und die Familie aller Definitionsideale von . Wir bezeichnen mit den topologischen Teilraum offener Primideale von . Ein Primideal von ist genau dann offen, wenn es ein Definitionsideal enthält. Für ein beliebiges Definitionsideal gibt es also einen kanonischen Homöomorphismus . Für zwei Definitionsideale induziert die kanonische Projektion einen Homöomorphismus . Wir können also jede Strukturgarbe als Garbe auf auffassen. Wir machen nun jede Garbe zu einer Garbe topologischer Ringe: Für jede kompakte offene Teilmenge trage die diskrete Topologie. Für eine beliebige offene Teilmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V \subset \mathrm{Spf}(A)} gilt aufgrund der Garbeneigenschaft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal O_{\mathrm{Spec}(A/I_{\lambda})}(V) = \lim_{U \subset V} \mathcal O_{\mathrm{Spec}(A/I_{\lambda})}(U)} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U} alle kompakten offenen Teilmengen von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle V} durchläuft. Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal O_{\mathrm{Spec}(A/I_{\lambda})}(V)} werde mit der Limes-Topologie ausgestattet. Diese Topologie wird in diesem Zusammenhang auch die pseudodiskrete Topologie genannt. Die Strukturgarbe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal O_{\mathrm{Spf}(A)}} ist nun der projektive Limes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \lim_{\lambda} \mathcal O_{\mathrm{Spec}(A/I_{\lambda})}} in der Kategorie der Garben topologischer Ringe auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Spf}(A)} . Das formale Spektrum von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle A} ist der topologisch geringte Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\mathrm{Spf}(A), \mathcal O_{\mathrm{Spf}(A)})} .

Formale Schemata

Ein formales Schema ist ein topologisch geringter Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\mathfrak X, \mathcal O_{\mathfrak X})} , sodass jeder Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in \mathfrak X} eine offene Umgebung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U \subseteq \mathfrak X} besitzt, sodass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (U,\mathcal O_{\mathfrak X}|_U)} als topologisch geringter Raum isomorph zum formalen Spektrum eines zulässigen Ringes ist. Ein Morphismus formaler Schemata ist ein Morphismus lokal geringter Räume, dessen Ringhomomorphismen stetig sind. Das definiert die Kategorie der formalen Schemata.

Lokal noethersche formale Schemata

Ein formales Schema Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak X} heißt lokal noethersch, wenn jeder Punkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x \in \mathfrak X} eine offene Umgebung besitzt, die isomorph zum formalen Spektrum eines noetherschen adischen Ringes ist. Ein lokal noethersches und quasi-kompaktes formales Schema heißt noethersch.[2]

Schemata als formale Schemata

Ein Schema Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (X,\mathcal O_X)} kann als formales Schema aufgefasst werden, indem die Strukturgarbe mit der pseudodiskreten Topologie ausgestattet wird. Das definiert einen volltreuen Funktor von der Kategorie der Schemata in die Kategorie der formalen Schemata.

Formale Vervollständigung

Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle X} ein noethersches Schema und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y \subset X} ein abgeschlossenes Unterschema, das durch die Idealgarbe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal J} definiert ist. Wir definieren durch Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal O_{\hat X} := \lim_n \mathcal O_X/\mathcal J^n} eine Garbe von topologischen Ringen auf Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} , wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal O_X/\mathcal J^n} die pseudodiskrete Topologie trage. Sei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat X := Y} . Der topologisch geringte Raum Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\hat X, \mathcal O_{\hat X})} ist ein noethersches formales Schema. Formale Schemata, die auf diese Weise definiert werden können heißen algebraisierbar.[3]

Diese Konstruktion hängt nicht von der Wahl von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal J} ab. Für jede weitere Idealgarbe Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathcal J'} mit Verschwindungsmenge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle Y} ergibt sich ein kanonisch isomorphes formales Schema.[4]

Ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle R} ein noetherscher Ring und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J \subset R} ein Ideal, so ist die Vervollständigung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \hat R := \lim_n R/J^n} ein noetherscher adischer Ring. Die formale Vervollständigung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Spec}(R/J)} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Spec}(R)} ist isomorph zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{Spf}(\hat R)} .

Literatur

  • Grothendieck: EGA I, Kapitel 0.7 und 10.
  • Hartshorne: Algebraic geometry, Kapitel II.9.
  • Fujiwara-Kato: Foundations of rigid geometry I, Kapitel I

Einzelnachweise

  1. EGA I, Déf. 0.7.1.2
  2. EGA I, Déf. 10.4.2
  3. Hartshorne: Ex. II.9.3.2
  4. Hartshorne: Rem. II.9.3.1