Funktionenring
Ein Funktionenring ist in der Mathematik (genauer der Ringtheorie) ein spezieller Ring von Funktionen. Diese spielen eine große Rolle in der abstrakten Algebra, Topologie, sowie zahlreichen Anwendungen der Mathematik in Naturwissenschaften.
Definition
Sei ein Ring, eine nichtleere Menge und
die Menge aller auf definierten Funktionen mit Werten in . Dann sind durch
Verknüpfungen erklärt, mit denen zu einem Ring wird, dem sogenannten Ring der Funktionen.
Wichtige Eigenschaften
- Der Ring "ererbt" gewisse Eigenschaften von , wie etwa die Kommutativität und das Einselement. Andere Eigenschaften, wie beispielsweise Nullteilerfreiheit, werden nicht "vererbt".
- Die Menge der konstanten Funktionen bildet einen zu isomorphen Unterring von . Damit kann als Teilring von betrachtet werden.
Beispiele
- Wählt man als die Menge der reellen Zahlen mit den üblichen Addition und Multiplikation und als eine offene Teilmenge von , so kann man von stetigen beziehungsweise differenzierbaren Funktionen sprechen. In diesem Falle sind die Mengen und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D(M)= \{ f\colon M\to R \mid f\text{ ist differenzierbar}\}} Unterringe von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathbb F(M,R)} . Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D(M)} ein Unterring von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle C(M)} .
Auswertungshomomorphismus
Für ein festes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\in M} ist die Abbildung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \phi\colon \mathbb F(M,R) \to R}
ein Ringhomomorphismus. Man bezeichnet ihn als Auswertungshomomorphismus oder auch einfach als die Auswertung an der Stelle Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle a\in M} .
Literatur
- Albrecht Beutelspacher: Lineare Algebra. Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen. 6. durchgesehene und ergänzte Auflage, Nachdruck. Vieweg + Teubner, Wiesbaden 2009, ISBN 978-3-528-56508-4 (Mathematik für Studienanfänger).
- Gerd Fischer: Lehrbuch der Algebra. Vieweg, Wiesbaden 2008, ISBN 978-3-8348-0226-2 (Vieweg Mathematik).