Galileo-Thermometer
Das Galileo-Thermometer (auch Galilei-Thermometer genannt) ist ein Thermometer, das aus einem Glaszylinder besteht und mit Flüssigkeit und Auftriebskörpern gefüllt ist. Es wurde nach dem (Vor)Namen des Physikers Galileo Galilei benannt, der das Prinzip entdeckte, dass sich die Dichte von Flüssigkeiten mit der Temperatur ändert.
Geschichte
Diese Art von Thermometer wurde vom Großherzog Ferdinando II. de’ Medici erfunden,[1] der 1654 auch das erste Thermometer mit Alkohol als Messflüssigkeit erfunden hat.
Funktionsprinzip
Ein Galileo-Thermometer zeigt anhand des Auftriebs verschiedener Körper in einer Flüssigkeit die Raumtemperatur an. Solche Messgeräte werden von verschiedenen Herstellern als Zimmerdekoration angeboten.
Das Thermometer besteht aus einem engen Glaszylinder, der mit einer Flüssigkeit (beispielsweise Öl) gefüllt ist. In der Flüssigkeit befinden sich mehrere (meist 5 oder 10) kleine Glasballons mit geringfügig unterschiedlicher Dichte, die aus dekorativen Gründen oft mit einer gefärbten Flüssigkeit (Wasser oder Ethanol) befüllt sind und an die jeweils eine kleine Plakette als Gewicht gehängt ist. Steigt die Temperatur, so dehnt sich die Flüssigkeit aus und verringert damit ihre Dichte und damit ändert sich der dichteabhängige statische Auftrieb der einzelnen Kugeln.
Die dazu verwendeten Glaskugeln, deren Durchmesser größer ist als der halbe Innendurchmesser des Zylinders[2] (wodurch sie in der Schichtung bleiben und sich gegenseitig nicht "überholen"), werden so übereinander angeordnet, dass deren mittlere Dichte von der obersten Kugel zur untersten Kugel zunimmt.
- Bei einer bestimmten Temperatur steigen alle Kugeln auf, deren mittlere Dichten kleiner sind als die mittlere Dichte der sie umgebenden Flüssigkeit ist.
- Alle Kugeln sinken ab, deren mittlere Dichten größer sind als die mittlere Dichte der sie umgebenden Flüssigkeit.
- Erwärmt sich dann die Flüssigkeit, nimmt also ihre Dichte ab, so sinkt eine Kugel von oben ab,
- kühlt sich die Flüssigkeit ab, so nimmt die Dichte der Flüssigkeit zu, und eine Kugel steigt nach oben.
Die Glaskörper sind so kalibriert, dass sie bei der auf der Plakette vermerkten Temperatur in der Flüssigkeit entweder in der Mitte schweben oder die Temperatur an der oben zuunterst oben schwimmenden Kugel anzeigen[2].
Der Messbereich üblicher Galileischer Thermometer beträgt etwa 18 bis 25 Grad Celsius in Schritten von einem oder zwei Grad Celsius. Bei Kalibrierung in 2°-Abständen kann als aktuelle Temperatur auch der Mittelwert zwischen den Temperaturwerten des untersten schwimmenden und des obersten abgesunkenen Glaskörpers gelten. Die Art der Kalibrierung ist üblicherweise in der Anleitung beschrieben.
Da Glas ein schlechter Wärmeleiter ist und die Wärme der Flüssigkeit auch auf die inneren Glasballons und deren Füllflüssigkeiten übergeht (und umgekehrt), folgt das Thermometer Änderungen der Lufttemperatur nur langsam und reagiert träge. Dafür kann mithilfe der "großen Skala" und der unterschiedlichen Farben der Flüssigkeiten die Temperatur gut "aus der Ferne" abgelesen werden.
Eine Schwierigkeit bei der Herstellung ist das Austarieren der Dichte der Glaskörper, dazu sollten die Glaskörper exakt dasselbe Volumen haben oder das Verdrängvolumen wird einzeln bestimmt und für den richtigen Auftrieb die nötige Menge Flüssigkeit zudosiert. Auch das einseitige Erhitzen und Verschmelzen der (alkohol)gefüllten Glaskörper bedarf handwerklicher Kunstfertigkeit.
Ausführungsdetails
Wäre der Außendurchmesser der kugelförmigen Tauchkörper nur geringfügig größer als der Radius des Lumens des Zylinders könnten sich die Tauchkörper im Zylinder verklemmen. Etwa, wenn der Zylinder gekippt wird. Wird die Zylinderachse wiederholt etwas um die Horizontale geschwenkt, schwappt die Ölfüllung (entgegen der Luftblase) hin und her, wobei die Widerstandskraft der Flüssigkeitsumströmung auf die Tauchkörper wirkt. Je geringer der Keilwinkel der Verklemmung ist, desto höher wird die Klemmkraft, die auf den Tauchkörper wirkt. Hohe Klemmkräfte können Kratzer durch Anreiben von Glas an Glas bewirken, im schlimmsten Fall auch ein Brechen von Kugel oder Zylinder zur Folge haben.
Will man einen Keilwinkel von mindestens 45° erreichen, muss der Kugelradius rK plus der 45°-Cosinus dieses Radius von der Zylinderwand mindestens bis zur Zylinderachse reichen.
Es muss also gelten:
1,707 rK >= rZ
rK >= 0,586 rZ
Der noch günstigere Keilwinkel von 60° hat 0,500 als Cosinus.
1,5 rK = rZ
rK = 2/3 rZ = 0,667 rZ
Dabei tangiert eine Tauchkugel genau die Achsen der darunter und darüber anliegenden. Sollen also die Temperaturmarken ziemlich frei hängen können, muss rK allerdings deutlich kleiner als 0,667 rZ sein.
Sowohl im Zylinder als auch in den Tauchkugeln müssen ausreichend große Gasblasen vorhanden sein, um die Wärmeausdehnung der jeweiligen Flüssigkeitsfüllungen abzupuffern, sodass kein für die Glasgefäße bruchgefährlicher Druckunterschied entsteht.
Flüssigkeitsfüllungen aus Öl oder Alkohol haben passende Dichten für den gewünschten Effekt und machen das Gerät beständig gegen Frost, der beim Transport auftreten kann.
Siehe auch
Literatur
- Christian Ucke, Hans-Joachim Schlichting: Das Galilei-Thermometer. Termometro Lento. In: Physik in unserer Zeit. 25 (1994), Heft 1, S. 44–45 (pdf)
Weblinks
Einzelnachweise
- ↑ W.E.K. Middleton: A History of the Thermometer, Johns Hopkins Press, Baltimore, 1966; zitiert bei: Spiel, Physik und Spaß. S. 87 (eingeschränkte Vorschau in der Google-Buchsuche).
- ↑ a b Spiel, Physik und Spaß. S. 87 (eingeschränkte Vorschau in der Google-Buchsuche).