Gleichwinkliges Polygon

aus Wikipedia, der freien Enzyklopädie
Gleichwinklige Sechsecke

Ein gleichwinkliges Polygon ist in der Geometrie ein Polygon der euklidischen Ebene, bei dem alle Innenwinkel gleich groß sind. Gleichwinklige Polygone sind von gleichseitigen Polygonen zu unterscheiden, bei denen die Polygonseiten alle gleich lang sind. Ein sowohl gleichwinkliges als auch gleichseitiges Polygon wird regelmäßiges Polygon genannt.

Definition

Ein Polygon heißt gleichwinklig, wenn die Innenwinkel des Polygons alle gleich groß sind, das heißt, wenn

gilt. Nachdem sich Innen- und Außenwinkel an den Ecken eines Polygons zu 180° ergänzen, sind äquivalent dazu in einem gleichwinkligen Polygon auch alle Außenwinkel gleich groß.

Beispiele

  • Ein gleichwinkliges Dreieck ist gerade ein gleichseitiges Dreieck mit Innenwinkeln zu und Außenwinkeln zu .
  • Ein gleichwinkliges Viereck ist ein Rechteck mit Innen- und Außenwinkeln zu je .
  • Ein regelmäßiges Polygon ist ein gleichwinkliges Polygon, das zudem gleichseitig ist.

Eigenschaften

  • Ein Tangentenpolygon, das gleichwinklig ist, ist stets auch gleichseitig und damit regelmäßig.
  • Ein Sehnenpolygon ist genau dann gleichwinklig, wenn die Seitenlängen zwischen zwei Werten alternieren.[1]
  • Ein einfaches, das heißt nicht überschlagenes, gleichwinkliges Polygon ist stets konvex. Nachdem die Winkelsumme in einem einfachen -Eck stets ergibt, messen in einem einfachen gleichwinkligen Polygon alle Innenwinkel
.
und alle Außenwinkel
.
  • In einfachen gleichwinkligen Polygonen gilt zudem der Satz von Viviani, nach dem die Summe der Abstände von einem beliebigen Punkt im Inneren des Polygons zu den Polygonseiten unabhängig von der Position des Punkts ist.

Einzelnachweise

  1. Michael De Villiers: Equiangular cyclic and equilateral circumscribed polygons. In: Mathematical Gazette. Nr. 95, 2011, S. 102–107.

Weblinks