Magnetische Feldstärke
Physikalische Größe | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | Magnetische Feldstärke | |||||||||||||||
Formelzeichen | ||||||||||||||||
|
Die magnetische Feldstärke (Formelzeichen: ), auch als magnetische Erregung bezeichnet, ordnet als vektorielle Größe jedem Raumpunkt eine Stärke und Richtung des durch die magnetische Spannung erzeugten Magnetfeldes zu. Sie hängt über die Materialgleichungen der Elektrodynamik (innerhalb linearer, homogener, isotroper, zeitinvarianter Materie zu: ) mit der magnetischen Flussdichte zusammen.
Die SI-Einheit der magnetischen Feldstärke ist Ampere pro Meter:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \left[ H \right] = \,{\mathrm{A} \over \mathrm{m}}}
Verschiedene Leiteranordnungen
Gerader Leiter
Bei einem geraden Leiter ist die Feldstärke entlang einer kreisförmigen Feldlinie konstant. Wenn Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H} die magnetische Feldstärke außerhalb eines stromdurchflossenen geraden Leiters im Abstand bezeichnet, Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} die Stromstärke im Leiter und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} den Radius der kreisförmigen Feldlinie, dann ist der Betrag der magnetischen Feldstärke in Material mit homogener magnetischer Permeabilität:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H = \frac{I}{2 \pi \cdot r}}
Zahlenbeispiel: Im Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} von 5 cm von der Achse eines geraden Leiters, welcher einen Strom von 50 A führt, beträgt die magnetische Feldstärke:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H = \frac{I}{2 \pi \cdot r} = \frac{50 \, \mathrm A}{2 \pi \cdot 0{,}05 \, \mathrm{m} } = 159{,}15 \,\mathrm{\frac{A}{m}}}
Stromdurchflossener Ring
Wird eine einzige Windung mit dem Radius Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r} vom Strom Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} durchflossen (Leiterschleife), misst man auf einem Punkt auf der Spulenachse im Abstand Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle x} vom Mittelpunkt des Ringes die Feldstärke
Für die Herleitung siehe: Biot-Savart – Kreisförmige Leiterschleife
Zylinderspule
Wird eine Spule der Länge Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle l} mit Durchmesser und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} Windungen vom Strom Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I} durchflossen, misst man im Zentrum die Feldstärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H}
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H = \frac{I \cdot N}{\sqrt{l^2 + D^2}}}
Handelt es sich um eine langgestreckte Spule (Länge viel größer als Durchmesser, für kurze Spulen existieren nur Näherungsformeln), kann man obige Formel vereinfachen und erhält:
Das Produkt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle I \cdot N} wird auch als Amperewindungszahl, als magnetische Spannung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle U_m} oder historisch bedingt auch als magnetische Durchflutung mit dem Formelzeichen bezeichnet.
Entlang der Spulenachse ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H} an den Enden der Spule genau halb so groß wie in der Mitte. Im Innenraum der Spule ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H} fast unabhängig vom Abstand zur Spulenachse und annähernd homogen. Starke Abweichungen misst man erst an den Enden der Spule.
Helmholtz-Spule
Zwei kurze, runde, hinsichtlich Größe und Windungszahl baugleiche und in gleicher Umlaufrichtung durchströmte Spulen im Abstand ihres Radius bauen zwischen sich ein weitgehend homogenes Magnetfeld auf. In der Mitte dieser als Helmholtz-Spule bekannten Anordnung hat das Magnetfeld die Feldstärke
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H = \frac{8 \, N \, I}{R \sqrt{125}}} .
Dabei ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle N} die Anzahl der Windungen (pro Spule).
Zusammenhänge mit anderen Größen
Aus den Materialgleichungen der Elektrodynamik ergibt sich der Zusammenhang zwischen der magnetischen Feldstärke Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle H} und der magnetischen Flussdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle B} innerhalb linearer, homogener, isotroper, zeitinvarianter Materie in vektorieller Schreibweise:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{H} = \vec{B} \cdot {1 \over \mu}} ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu} die magnetische Leitfähigkeit (Permeabilität) des betrachteten Raumpunktes ausdrückt. Allgemein gilt der Zusammenhang:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{B} = \mu_{0} \vec{H} + \vec{J}} ,
mit der magnetischen Polarisation Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{J}} (nicht zu verwechseln mit der elektrischen Stromdichte, die traditionell ebenfalls mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{J}} bezeichnet wird). Sofern die magnetische Polarisation ausschließlich durch die magnetische Feldstärke erzeugt wird, gilt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{J} = \mu_{0} \chi_{m} \vec{H}} ,
mit der magnetischen Suszeptibilität Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \chi_{m}} .
Innerhalb linearer, homogener, isotroper, zeitinvarianter Materie gilt folglich:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{B} = \mu_{0} \vec{H} + \vec{J} = \mu_{0} \vec{H} + \mu_{0} \chi_{m} \vec{H} = \mu_{0} \left( 1 + \chi_{m}\right) \vec{H} = \mu_{0} \mu_{m} \vec{H} = \mu \vec{H} } ,
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu } den magnetischen Permeabilitätstensor beschreibt, der in vielen Fällen als Skalar angenommen wird.
Beziehung zur elektrischen Stromdichte
Die Beziehung
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{rot}\ \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}}
aus den Maxwellschen Gleichungen stellt die lokale Form des Durchflutungssatzes dar. Dabei drückt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{J}} die elektrische Stromdichte und der zweite Summand mit der zeitlichen Ableitung der elektrischen Flussdichte Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{D}} die Dichte des Verschiebungsstromes aus. Im einfachen statischen Fall ohne zeitliche Änderung verschwindet der zweite Summand und es gilt:
- .
Dies bedeutet, dass die Wirbeldichte des magnetischen Feldes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{H}} in jedem Raumpunkt gleich der lokalen Leitungsstromdichte ist. Die Bedeutung liegt darin, dass damit die Quellenfreiheit des magnetischen Feldes mathematisch ausgedrückt wird und die magnetischen Feldlinien immer in sich geschlossen sind.
Im Harmonisch eingeschwungenen Zustand (HZE) genügt die Betrachtung der Fouriertransformierten des Ampèreschen Gesetzes:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{rot}\ \vec{H^*} = \vec{J^*} + j \omega \vec{D^*} = \kappa^* \vec{E^*} + j \omega \varepsilon^* \vec{E^*} = j \omega \left( \varepsilon^* - \frac{\kappa^*}{\omega} j \right) \vec{E^*}} ,
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \varepsilon^*} ist die komplexe elektrische Permittivität, die elektrische Relaxationsprozesse bzw. dielektrische Verluste im Material berücksichtigt. ist die komplexe Leitfähigkeit, die ohmsche Verluste sowie eine Phasenverschiebung von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{E^*}} zu Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{J^*}} im Material beschreibt. (Die Umformung gilt nur, sofern keine eingeprägte elektrische Feldstärke im Material vorliegt, welche z. B. durch chemische Prozesse hervorgerufen wird.)
wobei Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{H^*}, \vec{J^*}, \vec{D^*}} komplexe Vektorfelder sind. Anwendung der Rotation und weiterer Maxwellgleichungen (Gaußsches Gesetz für Magnetfelder, Induktionsgesetz) ergibt:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \operatorname{rot}\ \operatorname{rot}\ \vec{H^*} = \operatorname{grad}\left(\operatorname{div}\,\vec{H^*} \right)- \Delta \vec{H^*} = - \Delta \vec{H^*} = j \omega \left( \varepsilon^* - \frac{\kappa^*}{\omega} j \right) \operatorname{rot}\ \vec{E^*} = j \omega \left( \varepsilon^* - \frac{\kappa^*}{\omega} j \right) \left( -j \omega \vec{B^*} \right) = \omega^2 \mu^* \left( \varepsilon^* - \frac{\kappa^*}{\omega} j \right)\vec{H^*}=\vec{k^*}^2 \vec{H^*}} ,
wobei die komplexe Permitivitätskonstante Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mu^* } magnetische Relaxationsprozesse bzw. Verluste durch periodische magnetische Umpolarisierung beschreibt (in der Regel erst im Terahertz-Bereich relevant) und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \vec{k^*} } der komplexe Wellenzahlvektor einer entsprechenden TEM-Welle ist. Es ergibt sich also die Helmholzgleichung für die magnetische Feldstärke zu:
- Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \Delta \vec{H^*} + \vec{k^*}^2 \vec{H^*} = 0 } .
Literatur
Karl Küpfmüller, Gerhard Kohn: Theoretische Elektrotechnik und Elektronik. 16. Auflage. Springer Verlag, 2005, ISBN 3-540-20792-9.